RAS BiologyМикробиология Microbiology

  • ISSN (Print) 0026-3656
  • ISSN (Online) 3034-5464

Application of Flow Cytometry for Viability Assessment of Mutants for Translation Termination Factors in the Yeast Saccharomyces cerevisiae

PII
10.31857/S0026365624020268-1
DOI
10.31857/S0026365624020268
Publication type
Status
Published
Authors
Volume/ Edition
Volume 93 / Issue number 2
Pages
239-243
Abstract
Nonsense mutations in the essential SUP45 and SUP35 genes, encoding translation termination factors, affect the viability of Saccharomyces cerevisiae cells. Flow cytometry revealed that the viability of mutants was 3.5‒4 times lower compared to the wild-type. Moreover, the mutants were found to have higher sensitivity to ultrasonic treatment.
Keywords
SUP45 SUP35 нонсенс-мутации проточная цитофлуориметрия жизнеспособность Saccharomyces cerevisiae
Date of publication
15.03.2024
Year of publication
2024
Number of purchasers
0
Views
48

References

  1. 1. Журавлева Г.А., Бондарев С.А., Землянко О.М., Москаленко С.Е. Роль белков, взаимодействующих с факторами терминации трансляции eRF1 и eRF3, в регуляции трансляции и прионизации // Мол. биология. 2022. Т. 56. С. 206–226.
  2. 2. https://doi.org/10.31857/S002689842201013X
  3. 3. Alexandrov A., Grosfeld E., Mitkevich O., Bidyuk V., Nostaeva A., Kukhtevich I., Schneider R., et al. Systematic identification of yeast mutants with increased rates of cell death reveals rapid stochastic necrosis associated with cell division // bioRxiv. 2021.
  4. 4. https://doi.org/10.1101/2021.10.20.465133
  5. 5. Barbitoff Y., Matveenko A., Matiiv A., Maksiutenko E., Moskalenko S., Drozdova P., Polev D., Beliavskaia A., Danilov L., Predeus A., Zhouravleva G. Chromosome-level genome assembly and structural variant analysis of two laboratory yeast strains from the Peterhof Genetic Collection lineage // G3: Genes, Genomes, Genetics (Bethesda). 2021. V. 11.
  6. 6. https://doi.org/10.1093/g3journal/jkab029
  7. 7. Chabelskaya S., Kiktev D., Inge-Vechtomov S., Philippe M., Zhouravleva G. Nonsense mutations in the essential gene SUP35 of Saccharomyces cerevisiae are non-lethal // Mol. Genet. Genoms. 2004. V. 272. P. 297–307. https://doi.org/10.1007/s00438-004-1053-1
  8. 8. Davey H., Guyot S. Estimation of microbial viability using flow cytometry // Curr. Protoc. Cytom. 2020. V. 93. Art. e72. https://doi.org/10.1002/cpcy.72
  9. 9. Gietz R., Schiestl R., Willems A., Woods R. Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure // Yeast. 1995. V. 11. P. 355‒360. https://doi.org/10.1002/yea.320110408
  10. 10. Inge-Vechtomov S., Zhouravleva G., Philippe M. Eukaryotic release factors (eRFs) history // Biol. Cell. 2003. V. 95. P. 195–209.
  11. 11. https://doi.org/10.1016/s0248-4900 (03)00035-2
  12. 12. Kaiser C., Michaelis S., Mitchell A. Spring Harbor laboratory course manual. NY: Cold Spring Harbor Laboratory Press, 1994. 234 p.
  13. 13. Kwolek-Mirek M., Zadrag-Tecza R. Comparison of methods used for assessing the viability and vitality of yeast cells // FEMS Yeast Res. 2014. V. 14. P. 1068–1079.
  14. 14. https://doi.org/10.1111/1567-1364.12202
  15. 15. Maksiutenko E., Barbitoff Y., Matveenko A., Moskalenko S., Zhouravleva G. Gene amplification as a mechanism of yeast adaptation to nonsense mutations in release factor genes // Genes (Basel). 2021. V. 12. Art. 2019. https://doi.org/10.3390/genes12122019
  16. 16. Merritt G., Naemi W., Mugnier P., Webb H., Tuite M., von der Haar T. Decoding accuracy in eRF1 mutants and its correlation with pleiotropic quantitative traits in yeast // Nucl. Acids Res. 2010. V. 38. P. 5479–5492.
  17. 17. https://doi.org/10.1093/nar/gkq338
  18. 18. Moskalenko S., Chabelskaya S., Philippe M., Inge-Vechtomov S., Zhouravleva G. Viable nonsense mutants for the essential gene SUP45 of Saccharomyces cerevisiae // BMC Mol. Biol. 2003. V. 4.
  19. 19. https://doi.org/10.1186/1471-2199-4-2
  20. 20. RStudio Team (2020). RStudio: Integrated Development for R. RStudio, PBC, Boston, MA.
  21. 21. URL: http://www.rstudio.com/
  22. 22. Sambrook J., Fritsch E., Maniatis T. Molecular cloning: a laboratory manual // 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press, 1989. 1659 p.
  23. 23. Valouev I., Kushnirov V., Ter-Avanesyan M. Yeast polypeptide chain release factors eRF1 and eRF3 are involved in cytoskeleton organization and cell cycle regulation // Cell Motil. Cytoskeleton. 2002. V. 52. P. 161–173. https://doi.org/10.1002/cm.10040
  24. 24. Volkov K., Aksenova A., Soom M., Osipov K., Svitin A., Kurischko C., Shkundina I., Ter-Avanesyan M., Inge-Vechtomov S., Mironova L. Novel non-mendelian determinant involved in the control of translation accuracy in Saccharomyces cerevisiae // Genetics. 2002. V. 160. Р. 25‒36.
  25. 25. https://doi.org/10.1093/genetics/160.1.25
  26. 26. Zhouravleva G., Frolova L., Le Goff X., Le Guellec R., Inge-Vechtomov S., Kisselev L., Philippe M. Termination of translation in eukaryotes is governed by two interacting polypeptide chain release factors, eRF1 and eRF3 // EMBO J. 1995. V. 14. P. 4065–4072.
  27. 27. https://doi.org/.1002/j.1460-2075.1995.tb00078.x
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library