RAS BiologyМикробиология Microbiology

  • ISSN (Print) 0026-3656
  • ISSN (Online) 3034-5464

Introduction of a Sodium-Binding Motif into Subunits a and c of Bacillus sp. PS3 Proton F-ATPase Does Not Result in Sodium Specificity of the Enzyme

PII
10.31857/S0026365624030119-1
DOI
10.31857/S0026365624030119
Publication type
Status
Published
Authors
Volume/ Edition
Volume 93 / Issue number 3
Pages
346-350
Abstract
In bacteria F-type ATPase (F-ATPase) plays a key role in bioenergetics and couples ATP synthesis/hydrolysis with the transport of ions (H+ or Na+) across the membrane. The ion specificity of the enzyme is determined by the amino acid sequence of subunits c and а. Here, we introduced several mutations (7 in subunit c and 6 in subunit a) into F-ATPase of thermophilic bacterium Bacillus sp. PS3 in order to change the ion specificity of the enzyme from proton to sodium. The mutations did not affect the ATPase activity of the enzyme, but led to loss of proton conductivity and impaired the binding of subunit a to the c-subunit oligomer, rather than changed the ion specificity.
Keywords
роторные АТФазы F-АТФазы F0F1 ионная специфичность трансмембранный перенос ионов мутагенез
Date of publication
15.05.2024
Year of publication
2024
Number of purchasers
0
Views
36

References

  1. 1. Bietenhader M., Martos A., Tetaud E., Aiyar R. S., Sellem C. H., Kucharczyk R., et al. Experimental relocation of the mitochondrial ATP9 gene to the nucleus reveals forces underlying mitochondrial genome evolution // PLoS Genet. 2012. V. 8. Art. e1002876.
  2. 2. Datsenko K. A., Wanner B. L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products // Proc. Natl. Acad. Sci. USA. 2000. V. 97. P. 6640–6645.
  3. 3. Fillingame R. H. Identification of the dicyclohexylcarbodiimide-reactive protein component of the adenosine 5 triphosphate energy-transducing system of Escherichia coli // J. Bacteriol. 1975. V. 124. P. 870–883.
  4. 4. Lapashina A. S., Shugaeva T. E., Berezina K. M., Kholina T. D., Feniouk B. A. Amino acid residues β139, β189, and β319 modulate ADP-inhibition in Escherichia coli H+-FF-ATP synthase // Biochemistry (Moscow). 2019. V. 84. P. 407–415.
  5. 5. Laubinger W., Dimroth P. Characterization of the Na+-stimulated ATPase of Propionigenium modestum as an enzyme of the F1F0 type // Eur. J. Biochem. 1987. V. 168. P. 475–480.
  6. 6. Mulkidjanian A. Y., Galperin M. Y., Makarova K. S., Wolf Y. I., Koonin E. V. Evolutionary primacy of sodium bioenergetics // Biol. Direct. 2008. V. 3. Art. 13. https://doi.org/10.1186/1745-6150-3-13
  7. 7. Nishimura M., Ito T., Chance B. Studies on bacterial photophosphorylation. III. A sensitive and rapid method of determination of photophosphorylation // Biochim. Biophys. Acta. 1962. V. 59. P. 177–182.
  8. 8. Schneider E., Altendorf K. All three subunits are required for the reconstitution of an active proton channel (F0) of Escherichia coli ATP Synthase (F1F0) // EMBO J. 1985. V. 4. P. 515–518.
  9. 9. Suzuki T., Ueno H., Mitome N., Suzuki J., Yoshida M. F0 of ATP synthase is a rotary proton channel: obligatory coupling of proton translocation with rotation of c-subunit ring // J. Biol. Chem. 2002. V. 277. P. 13281–13285.
  10. 10. Toei M., Noji H. Single-molecule analysis of F0F1-ATP synthase inhibited by N, N-dicyclohexylcarbodiimide // J. Biol. Chem. 2013. V. 288. P. 25717–25726.
  11. 11. Zhang Y., Fillingame R. H. Changing the ion binding specificity of the Escherichia coli H(+)-transporting ATP synthase by directed mutagenesis of subunit c // J. Biol. Chem. 1995. V. 270. P. 87–93.
  12. 12. Zubareva V. M., Lapashina A. S., Shugaeva T. E., Litvin A. V., Feniouk B. A. Rotary ion-translocating ATPases/ATP synthases: diversity, similarities, and differences // Biochemistry (Moscow). 2020. V. 85. P. 1613–1630.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library