- Код статьи
- 10.31857/S0026365624040084-1
- DOI
- 10.31857/S0026365624040084
- Тип публикации
- Статус публикации
- Опубликовано
- Авторы
- Том/ Выпуск
- Том 93 / Номер выпуска 4
- Страницы
- 451-455
- Аннотация
- Впервые были выделены бактериофаги, специфичные для Rhodococcus aetherivorans, и впервые была показана перспективность беспозвоночных (в частности, Hyalophora cecropia, Eisenia fetida) как объектов для скрининга фаговой флоры представителей рода Rhodococcus. Часть выделенных фагов была способна расти на R. ruber и R. qingshengii. Была разработана эффективная методика размножения бактериофага в жидкой культуре R. aetherivorans. Найденные бактериофаги могут быть использованы для разработки эффективных генетических инструментов для Rhodococcus, в том числе и промышленно значимых штаммов.
- Ключевые слова
- Rhodococcus бактериофаг микробиота беспозвоночных рекомбиназы recET
- Дата публикации
- 15.07.2024
- Год выхода
- 2024
- Всего подписок
- 0
- Всего просмотров
- 25
Библиография
- 1. Бактериофаги. Биология и практическое применение / Под ред. Э. Каттер, А. М. Сулаквелидзе. М.: Научный мир, 2012. 640 с.
- 2. Bubnov D. M., Yuzbashev T. V., Khozov A. A., Melkina O. E., Vybornaya T. V., Stan G. B., Sineoky S. P. Robust counterselection and advanced λRed recombineering enable markerless chromosomal integration of large heterologous constructs // Nucleic Acids Res. 2022. V. 50. P. 8947–8960. https://doi.org/10.1093/nar/gkac649
- 3. Grechishnikova E. G., Shemyakina A. O., Novikov A. D., Lavrov K. V., Yanenko A. S. Rhodococcus: sequences of genetic parts, analysis of their functionality, and development prospects as a molecular biology platform // Crit. Rev. Biotechnol. 2023. V. 43. P. 835–850. https://doi.org/10.1080/07388551.2022.2091976
- 4. Guzman J., Vilcinskas A. Draft genome sequence of Rhodococcus rhodochrous strain G38GP, isolated from the Madagascar hissing cockroach // Microbiol. Resour. Announc. 2021. V. 10. Art. e0077721. https://doi.org/10.1128/MRA.00777-21
- 5. Kim D., Choi K. Y., Yoo M., Zylstra G. J., Kim E. Biotechnological potential of Rhodococcus biodegradative pathways // J. Microbiol. Biotechnol. 2018. V. 28. P. 1037–1051. https://doi.org/10.4014/jmb.1712.12017
- 6. Larkin M. J., Kulakov L. A., Allen C. C. Biodegradation and Rhodococcus – masters of catabolic versatility // Curr. Opin. Biotechnol. 2005. V. 16. P. 282–290. https://doi.org/10.1016/j.copbio.2005.04.007
- 7. Liang Y., Jiao S., Wang M., Yu H., Shen Z. A CRISPR/Cas9-based genome editing system for Rhodococcus ruber TH // Metab. Engin. 2020. V. 57. P. 13–22. https://doi.org/10.1016/j.ymben.2019.10.003
- 8. Liang Y. X., Yu H. M. Genetic toolkits for engineering Rhodococcus species with versatile applications // Biotechnol. Adv. 2021. V. 49. Art. 107748. https://doi.org/10.1016/j.biotechadv.2021.107748
- 9. Martinkova L., Uhnakova B., Patek M., Nesvera J., Kren V. Biodegradation potential of the genus Rhodococcus // Environ. Int. 2009. V. 35. P. 162–177. https://doi.org/10.1016/j.envint.2008.07.018
- 10. Salcedo-Porras N., Umana-Diaz C., de Oliveira Barbosa Bitencourt R., Lowenberger C. The role of bacterial symbionts in triatomines: an evolutionary perspective // Microorganisms. 2020. V. 8. Art. 1438. https://doi.org/10.3390/microorganisms8091438
- 11. Summer E. J., Liu M., Gill J. J., Grant M., Chan-Cortes T.N., Ferguson L., Janes C., Lange K., Bertoli M., Moore C., Orchard R. C., Cohen N. D., Young R. Genomic and functional analyses of Rhodococcus equi phages ReqiPepy6, ReqiPoco6, ReqiPine5, and ReqiDocB7 // Appl. Environ. Microbiol. 2011. V. 77. P. 669–683. https://doi.org/10.1128/AEM.01952-10
- 12. Yassin A. F. Rhodococcus triatomae sp. nov., isolated from a blood-sucking bug // Int. J. Syst. Evol. Microbiol. 2005. V. 55. P. 1575–1579. https://doi.org/10.1099/ijs.0.63571-0
- 13. Патент СССР. 1990. № SU1731814.
- 14. Патент США. 2014. № US20140187818A1.