RAS BiologyМикробиология Microbiology

  • ISSN (Print) 0026-3656
  • ISSN (Online) 3034-5464

Phototrophic Communities of Algo-Bacterial Mats of the Unique Relict Salt Pool Manych-Gudilo

PII
S3034546425060022-1
DOI
10.7868/S3034546425060022
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 94 / Issue number 6
Pages
511-526
Abstract
Lake Manych-Gudilo is a relict lake formed 2–3 million years ago at the site of the ancient strait connecting the Black and Caspian seas. During the dry season, total water salinity exceeds 50 g/L, with the levels of sulfate and magnesium in the brine higher than in the ocean water. The coastline has numerous bays and separating shallow basins. The article reports the results of investigation of microbial biodiversity in the algo-bacterial mat in a shallow basin with salinity varying from 40 to 70 g/L, which is associated with Lake Manych-Gudilo. The studied mat had the properties of a sulfuret, a community with an intense sulfur turnover. Microalgae of the genus Cladophora and filamentous cyanobacteria were the main producers of organic matter in the benthic community. Among the anoxygenic phototrophic bacteria isolated in pure cultures, halophilic purple sulfur bacteria Ectothiorhodospira marina and Lamprobacter modestohalophilus and green sulfur bacteria Prosthecochloris sp. predominated. Nonsulfur purple bacteria Rhodovulum adriatica, also present in the community, were able to use sulfide for photosynthesis. All identified species were typical of microbial mats of saline and hypersaline basins with elevated levels of sulfate and bivalent cations. The algo-bacterial mat was reconstructed in the laboratory at 80 g/L salinity using a Winogradsky column. Microbial diversity of the experimental mat was studied by sequencing the 16S rRNA gene fragments. The data obtained improved our understanding of bacterial species diversity in microbial mats adapted to extreme hypersaline conditions.
Keywords
реликтовое озеро Маныч-Гудило гиперсоленые экосистемы альго-бактериальные маты аноксигенные фотогрофные бактерии бактерии круговорота серы
Date of publication
01.06.2025
Year of publication
2025
Number of purchasers
0
Views
6

References

  1. 1. Bachar A., Omoregie E., de Wit R., Jonkers H.M. Diversity and function of Chloroflexus-like bacteria in a hypersaline microbial mat: phylogenetic characterization and impact on aerobic respiration // Appl. Environ. Microbiol. 2007. V. 73. P. 3975‒3983. https://doi.org/10.1128/AEM.02532-06
  2. 2. Bavendamm W. Die Physology der farblosen und roten Swefelbakterien des Susseund Salzwasser // Pflanzenforshung. 1924. V. 2. P. 373‒379.
  3. 3. Bello S., Howard-Azzeh M., Schellhorn H.E., Gupta R.S. Phylogenomic analyses and molecular signatures elucidating the evolutionary relationships amongst the Chlorobia and Ignavibacteria species: robust demarcation of two family-level clades within the order Chlorobiales and proposal for the family Chloroherpetonaceae fam. nov. // Microorganisms. 2022. V. 10. P. 1‒25. https://doi.org/10.3390/microorganisms10071312
  4. 4. Bulygina E.S., Kuznetsov B.B., Marusina A.I., Kravchenko I.K., Bykova S.A., Kolganova T.V., Galchenko V.F. Study of nucleotide sequences of nifH genes in representatives of methanotrophic bacteria // Microbiology (Moscow). 2002. V. 71. P. 500‒508. https://doi.org/10.1023/A:1019893526803
  5. 5. Bulysheva N.I. Bottom communities of Lake Manych-Gudilo under conditions of chronic salinization // Proc. Zool. Inst. RAS. St. Petersburg: Academy of Sciences, 2013. Appendix № 3. P. 69‒74.
  6. 6. Burganskaya E.I., Grouzdev D.S., Krutkina M.S., Gorlenko V.M. Bacterial communities of microbial mats of the White Sea supralittoral and of the littoral of the lakes separated from the sea // Microbiology (Moscow). 2019. V. 88. P. 600–612. https://doi.org/10.1134/S0026261719050035
  7. 7. Caroppo C., Albertano P.B., Bruno L., Montinari M., Rizzi M., Vigliotta G., Pagliara P. Identification and characterization of a new Halomicronema species (Cyanobacteria) isolated from the Mediterranean marine sponge Petrosia ficiformis (Porifera) // Fottea. 2012. V. 12. P. 315‒326. https://dx.doi.org/10.5507/fot.2012.022
  8. 8. Cohen Y., Krumbein W.E., Shilo M. Solar Lake (Sinai). Distribution of photosynthetic microorganisms and primary production // Limnol. Oceanogr. 1977. V. 2. P. 609‒620.
  9. 9. Edgar R.C. Search and clustering orders of magnitude faster than BLAST // Bioinformatics. 2010. V. 26. P. 2460‒2461. https://doi.org/10.1093/bioinformatics/btq461
  10. 10. Filatova T.B., Kleschenkov A.V., Aleshina E.G., Soiyer V.G. Hydrological and hydrochemical characteristics of lake Manych-Gudilo water // Научный альманах стран Причерноморья. 2018. Т. 13. № 188. С. 88‒94. https://doi.org/10.23947/2414-1143-2018-13-1-100-107
  11. 11. Gibson J., Pfennig N. and Waterbury J.B. Chloroherpeton thalassium gen. nov. et spec. nov., a non-filamentous, flexing and gliding green sulfur bacterium // Arch. Microbiol. 1984. V. 38. P. 96‒101. https://doi.org/10.1007/BF00413007
  12. 12. Gorlenko V.M. A new phototrophic green sulphur bacterium. Prosthecochloris aestuarii nov. gen. nov. spec. // Z. Allg. Mikrobiol. 1970. V. 10. P. 147–149. https://doi.org/10.1002/JOBM.19700100207
  13. 13. Gorlenko V.M., Lunina O.N., Grouzdev D.S., Krasnova E.D., Voronov D.A., Belenkova V.V., Kozyaeva V.V., Savvichev A.S. Present understanding of biodiversity of anoxygenic phototrophic bacteria in the relict Lake Mogilnoe (Kildin Island, Murmansk oblast, Russia) // Microbiology (Moscow). 2024. V. 93. P. 259–268. https://doi.org/10.1134/S0026261723604360
  14. 14. Harris J.K., Caporaso J.G., Walker J.J., Spear J.R., Gold N.J., Robertson C.E., Hugenholtz P., Goodrich J., McDonald D., Knights D., Marshall P., Tufo H., Knight R., Pace N.R. Phylogenetic stratigraphy in the Guerrero Negro hypersaline microbial mat // ISME. J. 2013. V. 7. P. 50–60. https://doi.org/10.1038/ismej.2012.79
  15. 15. Imhoff J.F. Anoxygenic phototrophic bacteria from extreme environments // Modern Topics in the Phototrophic Prokaryotes. 2017. P. 427–480. https://doi.org/10.1007/978-3-319-46261-5_13
  16. 16. Klappenbach J.A., Pierson B.K. Phylogenetic and physiological characterization of a filamentous anoxygenic photoautotrophic bacterium “Candidatus Chlorothrix halophila” gen. nov., sp. nov., recovered from hypersaline microbial mats // Arch. Microbiol. 2004. V. 181 P. 17‒25. https://doi.org/10.1007/s00203-003-0615-7
  17. 17. Komárek J. Recent changes (2008) in Cyanobacteria taxonomy based on a combination of molecular background with phenotype and ecological consequences (genus and species concept) // Hydrobiologia. 2010. V. 639. P. 245–259. https://doi.org/10.1007/s10750-009-0031-3
  18. 18. Kumar P.A., Srinivas T.N.R., Sasikala C., Ramana C.V., Saeling J., Imhoff J.F. Prosthecochloris indica sp. nov., a novel green sulfur bacterium from a marine aquaculture pond, Kakinada India // J. Gen. Appl. Microbiol. 2009. V. 55. P. 163–169. https://doi.org/10.2323/jgam.55.163
  19. 19. Kumar S., Stecher G., Li M., Knyaz C., Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms // Mol. Biol. Evol. 2018. V. 35 P. 1547‒1549. https://doi.org/10.1093/molbev/msy096
  20. 20. Kyndt J.A., Bryantseva I.A., Gorlenko V.M., Imhoff J.F. Genome of Lamprobacter modestohalophilus ShNLb02, a moderate halophilic photosynthetic purple bacterium of the Chromatiaceae family // Microbiol. Resour. Announ. 2024. V. 13. P. 1‒4. https://doi.org/10.1128/mra.00128-24
  21. 21. Lane D.J. 16S/23S sequencing // Nucleic acid techniques in bacterial systematics / Eds. Stackebrandt E., Goodfellow M. Chichester: John Wiley & Sons, Ltd. 1991. P. 115‒175.
  22. 22. Magoč T., Salzberg S.L. FLASH: fast length adjustment of short reads to improve genome assemblies // Bioinformatics. 2011. V. 27. P. 2957‒2963. https://doi.org/10.1093/bioinformatics/btr507
  23. 23. Nakahara N., Nobu M.K., Takaki Y., Miyazaki M., Tasumi E., Sakai S., Ogawara M., Yoshida N., Tamaki H., Yamanaka Y., Katayama A., Yamaguchi T., Takai K., Imachi H. Aggregatilinea lenta gen. nov., sp. nov., a slow-growing, facultatively anaerobic bacterium isolated from subseafloor sediment, and proposal of the new order Aggregatilineales ord. nov. within the class Anaerolineae of the phylum Chloroflexi // Int. J. Syst. Evol. Microbiol. 2019. V. 69. P. 1185–1194. https://doi.org/10.1099/ijsem.0.003291
  24. 24. Nubel U., Bateson M.M., Madigan M.T., Kuhl M., Ward D.M. Diversity and distribution in hypersaline microbial mats of bacteria related to Chloroflexus spp. // Appl. Environ. Microbiol. 2001. V. 67. P. 4365–4371. https://doi.org/10.1128/AEM.67.9.4365-4371.2001
  25. 25. Quast C., Pruesse E., Yilmaz P., Gerken J., Schweer T., Yarza P., Glöckner F.O. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools // Nucl. Acids Res. 2012. V. 41. P. 590‒596. https://doi.org/10.1093/nar/gks1219
  26. 26. Sanger F., Nicklen S., Coulson A.R. DNA sequencing with chain-terminating inhibitors // Proc. Natl. Acad. Sci. USA. 1977. V. 84. P. 5463‒5467.
  27. 27. Savvichev A.S., Kadnikov V.V., Rusanov I.I., Beletsky A.V., Krasnova E.D., Voronov D.A., Kallistova A.Yu., Veslopolova E.F., Zakharova E.E., Kokryatskaya N.M., Losyuk G.N., Demidenko N.A., Belyaev N.A., Sigalevich P.A., Mardanov A.V., Ravin N.V., Pimenov N.V. Microbial processes and microbial communities in the water column of the polar meromictic lake Bol’shie Khruslomeny at the White Sea coast // Front. Microbiol. 2020. V. 11. Art. 1945. https://doi.org/10.3389/ fmicb.2020.01945
  28. 28. Thiel V., Tank M., Bryant D.A. Diversity of chlorophototrophic bacteria revealed in the omics era // Annu. Rev. Plant Biol. 2018. V. 69. P. 21–49. https://doi.org/10.1146/annurev-arplant-042817-040500
  29. 29. Triadó-Margarit X., Vila X., Abella C.A. Novel green sulfur bacteria phylotypes detected in saline environments: ecophysiological characters versus phylogenetic taxonomy // Antonie van Leeuwenhoek. 2010. V. 97. P. 419–431. https://doi.org/10.1007/s10482-010-9420-x
  30. 30. Van Gemerden H., Mas J. Ecology of phototrophic sulfur bacteria // Anoxygenic photosynthetic bacteria. 1995. V. 2. P. 49–85. https://doi.org/10.1007/0-306-47954-0_4
  31. 31. Wasmund K., Mußmann M., Loy A. The life sulfuric: microbial ecology of sulfur cycling in marine sediments // Environ. Microbiol. 2017. V. 9. P. 323–344. https://doi.org/10.1111/1758-2229.12538
QR
Translate

Indexing

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library