- PII
- S3034546425060022-1
- DOI
- 10.7868/S3034546425060022
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 94 / Issue number 6
- Pages
- 511-526
- Abstract
- Lake Manych-Gudilo is a relict lake formed 2–3 million years ago at the site of the ancient strait connecting the Black and Caspian seas. During the dry season, total water salinity exceeds 50 g/L, with the levels of sulfate and magnesium in the brine higher than in the ocean water. The coastline has numerous bays and separating shallow basins. The article reports the results of investigation of microbial biodiversity in the algo-bacterial mat in a shallow basin with salinity varying from 40 to 70 g/L, which is associated with Lake Manych-Gudilo. The studied mat had the properties of a sulfuret, a community with an intense sulfur turnover. Microalgae of the genus Cladophora and filamentous cyanobacteria were the main producers of organic matter in the benthic community. Among the anoxygenic phototrophic bacteria isolated in pure cultures, halophilic purple sulfur bacteria Ectothiorhodospira marina and Lamprobacter modestohalophilus and green sulfur bacteria Prosthecochloris sp. predominated. Nonsulfur purple bacteria Rhodovulum adriatica, also present in the community, were able to use sulfide for photosynthesis. All identified species were typical of microbial mats of saline and hypersaline basins with elevated levels of sulfate and bivalent cations. The algo-bacterial mat was reconstructed in the laboratory at 80 g/L salinity using a Winogradsky column. Microbial diversity of the experimental mat was studied by sequencing the 16S rRNA gene fragments. The data obtained improved our understanding of bacterial species diversity in microbial mats adapted to extreme hypersaline conditions.
- Keywords
- реликтовое озеро Маныч-Гудило гиперсоленые экосистемы альго-бактериальные маты аноксигенные фотогрофные бактерии бактерии круговорота серы
- Date of publication
- 01.06.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 6
References
- 1. Bachar A., Omoregie E., de Wit R., Jonkers H.M. Diversity and function of Chloroflexus-like bacteria in a hypersaline microbial mat: phylogenetic characterization and impact on aerobic respiration // Appl. Environ. Microbiol. 2007. V. 73. P. 3975‒3983. https://doi.org/10.1128/AEM.02532-06
- 2. Bavendamm W. Die Physology der farblosen und roten Swefelbakterien des Susseund Salzwasser // Pflanzenforshung. 1924. V. 2. P. 373‒379.
- 3. Bello S., Howard-Azzeh M., Schellhorn H.E., Gupta R.S. Phylogenomic analyses and molecular signatures elucidating the evolutionary relationships amongst the Chlorobia and Ignavibacteria species: robust demarcation of two family-level clades within the order Chlorobiales and proposal for the family Chloroherpetonaceae fam. nov. // Microorganisms. 2022. V. 10. P. 1‒25. https://doi.org/10.3390/microorganisms10071312
- 4. Bulygina E.S., Kuznetsov B.B., Marusina A.I., Kravchenko I.K., Bykova S.A., Kolganova T.V., Galchenko V.F. Study of nucleotide sequences of nifH genes in representatives of methanotrophic bacteria // Microbiology (Moscow). 2002. V. 71. P. 500‒508. https://doi.org/10.1023/A:1019893526803
- 5. Bulysheva N.I. Bottom communities of Lake Manych-Gudilo under conditions of chronic salinization // Proc. Zool. Inst. RAS. St. Petersburg: Academy of Sciences, 2013. Appendix № 3. P. 69‒74.
- 6. Burganskaya E.I., Grouzdev D.S., Krutkina M.S., Gorlenko V.M. Bacterial communities of microbial mats of the White Sea supralittoral and of the littoral of the lakes separated from the sea // Microbiology (Moscow). 2019. V. 88. P. 600–612. https://doi.org/10.1134/S0026261719050035
- 7. Caroppo C., Albertano P.B., Bruno L., Montinari M., Rizzi M., Vigliotta G., Pagliara P. Identification and characterization of a new Halomicronema species (Cyanobacteria) isolated from the Mediterranean marine sponge Petrosia ficiformis (Porifera) // Fottea. 2012. V. 12. P. 315‒326. https://dx.doi.org/10.5507/fot.2012.022
- 8. Cohen Y., Krumbein W.E., Shilo M. Solar Lake (Sinai). Distribution of photosynthetic microorganisms and primary production // Limnol. Oceanogr. 1977. V. 2. P. 609‒620.
- 9. Edgar R.C. Search and clustering orders of magnitude faster than BLAST // Bioinformatics. 2010. V. 26. P. 2460‒2461. https://doi.org/10.1093/bioinformatics/btq461
- 10. Filatova T.B., Kleschenkov A.V., Aleshina E.G., Soiyer V.G. Hydrological and hydrochemical characteristics of lake Manych-Gudilo water // Научный альманах стран Причерноморья. 2018. Т. 13. № 188. С. 88‒94. https://doi.org/10.23947/2414-1143-2018-13-1-100-107
- 11. Gibson J., Pfennig N. and Waterbury J.B. Chloroherpeton thalassium gen. nov. et spec. nov., a non-filamentous, flexing and gliding green sulfur bacterium // Arch. Microbiol. 1984. V. 38. P. 96‒101. https://doi.org/10.1007/BF00413007
- 12. Gorlenko V.M. A new phototrophic green sulphur bacterium. Prosthecochloris aestuarii nov. gen. nov. spec. // Z. Allg. Mikrobiol. 1970. V. 10. P. 147–149. https://doi.org/10.1002/JOBM.19700100207
- 13. Gorlenko V.M., Lunina O.N., Grouzdev D.S., Krasnova E.D., Voronov D.A., Belenkova V.V., Kozyaeva V.V., Savvichev A.S. Present understanding of biodiversity of anoxygenic phototrophic bacteria in the relict Lake Mogilnoe (Kildin Island, Murmansk oblast, Russia) // Microbiology (Moscow). 2024. V. 93. P. 259–268. https://doi.org/10.1134/S0026261723604360
- 14. Harris J.K., Caporaso J.G., Walker J.J., Spear J.R., Gold N.J., Robertson C.E., Hugenholtz P., Goodrich J., McDonald D., Knights D., Marshall P., Tufo H., Knight R., Pace N.R. Phylogenetic stratigraphy in the Guerrero Negro hypersaline microbial mat // ISME. J. 2013. V. 7. P. 50–60. https://doi.org/10.1038/ismej.2012.79
- 15. Imhoff J.F. Anoxygenic phototrophic bacteria from extreme environments // Modern Topics in the Phototrophic Prokaryotes. 2017. P. 427–480. https://doi.org/10.1007/978-3-319-46261-5_13
- 16. Klappenbach J.A., Pierson B.K. Phylogenetic and physiological characterization of a filamentous anoxygenic photoautotrophic bacterium “Candidatus Chlorothrix halophila” gen. nov., sp. nov., recovered from hypersaline microbial mats // Arch. Microbiol. 2004. V. 181 P. 17‒25. https://doi.org/10.1007/s00203-003-0615-7
- 17. Komárek J. Recent changes (2008) in Cyanobacteria taxonomy based on a combination of molecular background with phenotype and ecological consequences (genus and species concept) // Hydrobiologia. 2010. V. 639. P. 245–259. https://doi.org/10.1007/s10750-009-0031-3
- 18. Kumar P.A., Srinivas T.N.R., Sasikala C., Ramana C.V., Saeling J., Imhoff J.F. Prosthecochloris indica sp. nov., a novel green sulfur bacterium from a marine aquaculture pond, Kakinada India // J. Gen. Appl. Microbiol. 2009. V. 55. P. 163–169. https://doi.org/10.2323/jgam.55.163
- 19. Kumar S., Stecher G., Li M., Knyaz C., Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms // Mol. Biol. Evol. 2018. V. 35 P. 1547‒1549. https://doi.org/10.1093/molbev/msy096
- 20. Kyndt J.A., Bryantseva I.A., Gorlenko V.M., Imhoff J.F. Genome of Lamprobacter modestohalophilus ShNLb02, a moderate halophilic photosynthetic purple bacterium of the Chromatiaceae family // Microbiol. Resour. Announ. 2024. V. 13. P. 1‒4. https://doi.org/10.1128/mra.00128-24
- 21. Lane D.J. 16S/23S sequencing // Nucleic acid techniques in bacterial systematics / Eds. Stackebrandt E., Goodfellow M. Chichester: John Wiley & Sons, Ltd. 1991. P. 115‒175.
- 22. Magoč T., Salzberg S.L. FLASH: fast length adjustment of short reads to improve genome assemblies // Bioinformatics. 2011. V. 27. P. 2957‒2963. https://doi.org/10.1093/bioinformatics/btr507
- 23. Nakahara N., Nobu M.K., Takaki Y., Miyazaki M., Tasumi E., Sakai S., Ogawara M., Yoshida N., Tamaki H., Yamanaka Y., Katayama A., Yamaguchi T., Takai K., Imachi H. Aggregatilinea lenta gen. nov., sp. nov., a slow-growing, facultatively anaerobic bacterium isolated from subseafloor sediment, and proposal of the new order Aggregatilineales ord. nov. within the class Anaerolineae of the phylum Chloroflexi // Int. J. Syst. Evol. Microbiol. 2019. V. 69. P. 1185–1194. https://doi.org/10.1099/ijsem.0.003291
- 24. Nubel U., Bateson M.M., Madigan M.T., Kuhl M., Ward D.M. Diversity and distribution in hypersaline microbial mats of bacteria related to Chloroflexus spp. // Appl. Environ. Microbiol. 2001. V. 67. P. 4365–4371. https://doi.org/10.1128/AEM.67.9.4365-4371.2001
- 25. Quast C., Pruesse E., Yilmaz P., Gerken J., Schweer T., Yarza P., Glöckner F.O. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools // Nucl. Acids Res. 2012. V. 41. P. 590‒596. https://doi.org/10.1093/nar/gks1219
- 26. Sanger F., Nicklen S., Coulson A.R. DNA sequencing with chain-terminating inhibitors // Proc. Natl. Acad. Sci. USA. 1977. V. 84. P. 5463‒5467.
- 27. Savvichev A.S., Kadnikov V.V., Rusanov I.I., Beletsky A.V., Krasnova E.D., Voronov D.A., Kallistova A.Yu., Veslopolova E.F., Zakharova E.E., Kokryatskaya N.M., Losyuk G.N., Demidenko N.A., Belyaev N.A., Sigalevich P.A., Mardanov A.V., Ravin N.V., Pimenov N.V. Microbial processes and microbial communities in the water column of the polar meromictic lake Bol’shie Khruslomeny at the White Sea coast // Front. Microbiol. 2020. V. 11. Art. 1945. https://doi.org/10.3389/ fmicb.2020.01945
- 28. Thiel V., Tank M., Bryant D.A. Diversity of chlorophototrophic bacteria revealed in the omics era // Annu. Rev. Plant Biol. 2018. V. 69. P. 21–49. https://doi.org/10.1146/annurev-arplant-042817-040500
- 29. Triadó-Margarit X., Vila X., Abella C.A. Novel green sulfur bacteria phylotypes detected in saline environments: ecophysiological characters versus phylogenetic taxonomy // Antonie van Leeuwenhoek. 2010. V. 97. P. 419–431. https://doi.org/10.1007/s10482-010-9420-x
- 30. Van Gemerden H., Mas J. Ecology of phototrophic sulfur bacteria // Anoxygenic photosynthetic bacteria. 1995. V. 2. P. 49–85. https://doi.org/10.1007/0-306-47954-0_4
- 31. Wasmund K., Mußmann M., Loy A. The life sulfuric: microbial ecology of sulfur cycling in marine sediments // Environ. Microbiol. 2017. V. 9. P. 323–344. https://doi.org/10.1111/1758-2229.12538