- PII
- S3034546425060069-1
- DOI
- 10.7868/S3034546425060069
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 94 / Issue number 6
- Pages
- 565-572
- Abstract
- Parvivirga hydrogeniphila Es71-Z01O1 is a thermophilic bacterium capable of anaerobically growing in the range of 25–70°C (optimum 47–60°C) and pH 6.0–8.5 (optimum 6.8–7.2) and using molecular hydrogen or formate as electron donors and Fe(III) as an acceptor. Genomic analysis revealed the presence of genes for the serine branch of the reductive glycine pathway in the absence of glycine reductase genes. Proteomic studies demonstrated increased expression of other key enzymes of this pathway: formate dehydrogenase, methyltetrahydrofolate cyclohydrolase, glycine cleavage system, and serine hydroxymethyltransferase. The rate of autotrophic carbon fixation was 0.357 fmol C/cell day, which is comparable with the rates of known autotrophic microorganisms. The obtained results indicate the functioning of autotrophic CO assimilation in P. hydrogeniphila, with the serine variant of the reductive glycine pathway being the most probable. The results of the study contribute to the understanding of the metabolic diversity of anaerobic microorganisms and expand knowledge about the distribution of different carbon fixation mechanisms in microorganisms belonging to new phylogenetic groups.
- Keywords
- Parvivirga hydrogeniphila восстановительный глициновый путь автотрофия фиксация CO протеомный анализ серингидроксиметилтрансфераза
- Date of publication
- 01.06.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 5
References
- 1. Aziz R.K., Bartels D., Best A.A., DeJongh M., Disz T., Edwards R.A., Formsma K., Gerdes S., Glass E.M., Kubal M. The RAST Server: Rapid Annotations using Subsystems Technology // BMC Genomics. 2008. V. 9. Art. 75. https://doi.org/10.1186/1471-2164-9-75
- 2. Berg I.A. Ecological aspects of the distribution of different autotrophic CO2 fixation pathways // Appl. Environ. Microbiol. 2011. V. 77. P. 1925–1936. https://doi.org/10.1128/aem.02473-10
- 3. Bruinsma L., Wenk S., Claassens N.J., Martins Dos Santos V.A.P. Paving the way for synthetic C1-metabolism in Pseudomonas putida through the reductive glycine pathway // Metab. Eng. 2023. V. 76. P. 215–224. https://doi.org/10.1016/j.ymben.2023.02.004
- 4. Claassens N.J., Satanowski A., Bysani V.R., Dronsella B., Orsi E., Rainaldi V., Yilmaz S., Wenk S., Lindner S.N. Engineering the reductive glycine pathway: a promising synthetic metabolism approach for C1-assimilation // Adv. Biochem. Eng. Biotechnol. 2022. V. 180. P. 299–350. https://doi.org/10.1007/10_2021_181
- 5. Cox J., Neuhauser N., Michalski A., Scheltema R.A., Olsen J.V., Mann M. Andromeda: a peptide search engine integrated into the MaxQuant environment // J. Proteome Res. 2011. V. 10. P. 1794–1805. https://doi.org/10.1021/pr101065j
- 6. Kevbrin V.V., Zavarzin G.A. The influence of sulfur compounds on the growth of halophilic homoacetic bacterium Acetohalobium arabaticum // Microbiology (Moscow). 1992. V. 61. P. 563–571.
- 7. Khomyakova M.A., Zavarzina D.G., Merkel A.Y., Klyukina A.A., Pikhtereva V.A., Gavrilov S.N., Slobodkin A.I. The first cultivated representatives of the actinobacterial lineage OPB41 isolated from subsurface environments constitute a novel order Anaerosomatales // Front. Microbiol. 2022. V. 13. Art. 1047580. https://doi.org/10.3389/fmicb.2022.1047580
- 8. Kulak N.A., Pichler G., Paron I., Nagaraj N., Mann M. Minimal, encapsulated proteomic-sample processing applied to copy-number estimation in eukaryotic cells // Nat. Methods. 2014. V. 11. P. 319–324. https://doi.org/10.1038/nmeth.2834
- 9. Mall A., Sobotta J., Huber C., Tschirner C., Kowarschik S., Bačnik K., Mergelsberg M., Boll M., Hügler M., Eisenreich W., Berg I.A. Reversibility of citrate synthase allows autotrophic growth of a thermophilic bacterium // Science. 2018. V. 359. P. 563–567. https://doi.org/10.1126/science. aao2410
- 10. Sánchez-Andrea I., Guedes I.A., Hornung B., Boeren S., Lawson C.E., Sousa D.Z., Bar-Even A., Claassens N.J., Stams A.J.M. The reductive glycine pathway allows autotrophic growth of Desulfovibrio desulfuricans // Nat. Commun. 2020. V. 11. Art. 5090. https://doi.org/10.1038/s41467-020-18906-7
- 11. Sorokin D.Y., Messina E., La Cono V., Ferrer M., Ciordia S., Mena M.C., Toshchakov S.V., Golyshin P.N., Yakimov M.M. Sulfur respiration in a group of facultatively anaerobic natronoarchaea ubiquitous in hypersaline soda lakes // Front. Microbiol. 2018. V. 9. Art. 2359. https://doi.org/10.3389/fmicb.2018.02359
- 12. Tyanova S., Temu T., Cox J. The MaxQuant computational platform for mass spectrometry-based shotgun proteomics // Nat. Protoc. 2016. V. 11. P. 2301–2319. https://doi.org/10.1038/nprot.2016.136
- 13. Wolin E.A., Wolin M.J., Wolfe R.S. Methane formation by bacterial extracts // J. Biol. Chem. 1963. V. 238. P. 2882–2888.