- PII
- S3034546425060127-1
- DOI
- 10.7868/S3034546425060127
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 94 / Issue number 6
- Pages
- 637-652
- Abstract
- The potential danger of toxin-forming fungus S. chartarum in the walls of buildings in St. Petersburg was assessed, its chemotype-specific signs, and toxicity of conidia and culture fluids were studied. We studied the composition of proteins, the relative quantitative content of trichothecene mycotoxins, as well as the qualitative composition of triprenylphenols of this fungus for the first time in Russia. It was noted that S. chartarum is often found in the St. Petersburg buildings materials containing cellulose, dominating in terms of abundance to other indoor fungi. It was shown that the toxic activity of S. chartarum conidia to Paramecium caudatum is determined by trichothecene mycotoxins, and the toxicity of culture liquids is determined by triprenyl phenols, in particular, stachybotridial. The potential ability detected to synthesize macrocyclic trichothecene mycotoxins in 27% of the S. chartarum strains and 53% to synthesize stachylysin indicates the danger of these micromycetes for the biodamaged premises occupants.
- Keywords
- Stachybotrys chartarum биоповреждения микотоксины трихотецены трипренилфенолы стахиботридиал стахилизин
- Date of publication
- 01.06.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 6
References
- 1. Александрова Г.А., Кирьянова И.Н., Брессен А.П., Крылова И.О., Четина О.А. Микромицеты в жилых помещениях города Перми // Проблемы медицинской микологии. 2012. Т. 14. № 2. С. 54–57.
- 2. Берестецкий А.О., Далинова А.О., Дубовик В.Р., Григорьева Е.Н., Кочура Д.М., Сендерский И.В., Смирнов С.Н., Степанычева Е.А., Тураева С.М. Анализ и выделение вторичных метаболитов гриба Bipolaris sorokiniana различными методами хроматографии и спектр их биологической активности // Прикл. биохимия и микробиология. 2020. Т. 56. С. 483–496. https://doi.org/10.31857/S0555109920050050
- 3. Berestetskiy A.O., Dalinova A.A., Dubovik V.R., Grigoryeva E.N., Kochura D.M., Senderskiy I.V., Smirnov S.N., Stepanycheva E.A., Turaeva S.M. Analysis and isolation of secondary metabolites of Bipolaris sorokiniana by different chromatography techniques and the spectrum of their biological activity // Appl. Biochem. Microbiol. 2020. V. 56. P. 569–582. https://doi.org/10.1134/S0003683820050051
- 4. Еланский С.Н., Петрунина Я.В., Лаврова О.И., Лихачев А.Н. Сравнительный анализ российских штаммов Stachybotrys chartarum // Микробиология. 2004. Т. 73. С. 73–79.
- 5. Elanskii S.N., Petrunina Ya.V., Lavrova O.I., Likhachev A.N. A сomparative analysis of Stachybotrys chartarum strains isolated in Russia // Microbiology (Moscow). 2004. V. 73. P. 73–79. https://doi.org/10.1023/B:MICI.0000016370.43585.75
- 6. Кураков А.В. Методы выделения и характеристика комплексов микроскопических грибов наземных экосистем: учеб. пособие. М.: Макс Пресс, 2001. 92 с.
- 7. Методические рекомендации № 2. Микологическое исследование объектов окружающей среды и определение противогрибковой активности различных веществ. СПб.: Изд. Дом СПбМАПО, 2008. 16 с.
- 8. Методы экспериментальной микологии / Под ред. Билай В.И. Киев: Наук. думка, 1982. 552 с.
- 9. РВСН 20-01-2006 Санкт-Петербург Система региональных нормативных документов градостроительной деятельности в Санкт-Петербурге. Региональные временные строительные нормы. Защита строительных конструкций, зданий и сооружений от агрессивных химических и биологических воздействий окружающей среды. СПб.: Правительство Санкт-Петербурга, 2006. 50 с.
- 10. Andersen B., Frisvad J.C., Sondergaard Ib., Rasmussen Ib.S., Larsen L.S. Associations between fungal species and water-damaged building materials // Appl. Environ. Microbiol. 2011. V. 77. P. 4180‒4188. https://doi.org/10.1128/AEM.02513-10
- 11. Andersen B., Nielsen K.F., Thrane U., Szaro T., Taylor J.W., Jarvis B.B. Molecular and phenotypic descriptions of Stachybotrys chlorohalonata sp. nov. and two chemotypes of Stachybotrys chartarum found in water-damaged buildings // J. Mycologia. 2003. V. 95. P. 1227‒1238. https://doi.org/10.1080/15572536.2004.11833031
- 12. Brasel T.L. Detection of airborne trichothecene mycotoxins from Stachybotrys chartarum and their relationship to sick building syndrome. PhD Thesis. Texas Tech University Health Sciences Center, US Texas, 2004.
- 13. Brasel T.L., Martin J.M., Carriker C.G., Wilson S.C., Straus D.C. Detection of airborne Stachybotrys chartarum macrocyclic trichothecene mycotoxins in the indoor environment // Appl. Environ. Microbiol. 2005. V. 71. Р. 7376‒7388. https://doi.org/10.1128/AEM.71.11.7376-7388.2005
- 14. Cruse M., Telerant R., Gallagher T., Lee T., Taylor J.W. Cryptic species in Stachybotrys chartarum // Mycologia. 2002. V. 94. P. 814–822. https://doi.org/10.2307/3761696
- 15. Doyle J.J., Doyle J.L. A rapid DNA isolation procedure for small quantities of fresh leaf tissue // Phytochem. Bull. 1987. V. 19. № 1. P. 11‒15.
- 16. Dyląg M., Spychala K., Zielinski J., Lagowski D., Gnat S. Update on Stachybotrys chartarum – black mold perceived as toxigenic and potentially pathogenic to humans // Biology. 2022. V. 11. Art. 352. https://doi.org/10.3390/biology11030352
- 17. Etzel R., Montana E., Sorenson W.G., Kullman G.G., Allan T.M., Dearborn D.G., Olson D.R., Jarvis B., Miller J.D. Acute pulmonary hemorrhage in infants associated with exposure to Stachybotrys atra and other fungi // Arch. Pediatr. Adolesc. Med. 1998. V. 152. P. 757‒762. https://doi.org/10.1001/archpedi.152.8.757
- 18. Gregory L., Rand T.G., Dearborn D., Yike I., Vesper S. Immunocytochemical localization of stachylysin in Stachybotrys chartarum spores and spore-impacted mouse and rat lung tissue // Mycopathologia. 2003. V. 156. P. 109‒117. https://doi.org/10.1023/a:1022968121285
- 19. Gregory L., Pestka J.J., Dearborn D.G., Rand T.G. Localization of satratoxin-G in Stachybotrys chartarum spores and spore-impacted mouse lung using immunocytochemistry // Toxicol. Pathol. 2004. V. 32. P. 26–34. https://doi.org/10.1080/01926230490260790
- 20. Gruenwald M., Rabenstein A., Remesch M., Kuever J. MALDI-TOF mass-spectrometry fingerprinting: a diagnostic tool to differentiate dematiaceous fungi Stachybotrys chartarum and Stachybotrys chlorohalonata // J. Microbiol. Meth. 2015. V. 115. P. 83‒88. https://doi.org/10.1016/j.mimet.2015.05.025
- 21. Jagels A., Lindemann V., Ulrich S., Gottschalk C., Cramer B., Hübne F., Gareis M., Humpf H.-U. Exploring secondary metabolite profiles of Stachybotrys spp. by LC-MS/MS // Toxins. 2019. V. 11. Art. 133. https://doi.org/10.3390/toxins11030133
- 22. Kumar S., Stecher G., Li M., Knyaz C., Tamura K. MEGA X: Molecular evolutionary genetics analysis across computing platforms // Mol. Biol. Evol. 2018. V. 35. P. 1547‒1549. https://doi.org/10.1093/molbev/msy096
- 23. Li Y., Liu D., Cheng Z., Proksch P., Lin W. Cytotoxic trichothecene-type sesquiterpenes from the sponge-derived fungus Stachybotrys chartarum with tyrosine kinase inhibition // RSC Adv. 2017. V. 7. P. 7259‒7267. https://doi.org/10.1039/c6ra26956g
- 24. Lichtenstein J.H.R., Molina R.M., Donaghey T.C., Amuzie C.J., Pestka J.J., Coull B.A., Brain J.D. Pulmonary responses to Stachybotrys chartarum and its toxins: mouse strain affects clearance and macrophage cytotoxicity // Toxicol. Sci. 2010. V. 116. P. 113‒121. https://doi.org/10.1093/toxsci/kfq104
- 25. Lombard L., Houbraken J., Decock C., Samson R.A., Meijer M., Reblova M., Groenewald J.Z., Crous P.W. Generic hyper-diversity in Stachybotriaceae // Persoonia ‒ Mol. Phylogeny and Evolution of Fungi. 2016. V. 36. P. 156–246. https://doi.org/10.3767/003158516X691582
- 26. MALDI Biotyper 3.1. User manual revision 1. Bruker Daltonics. Bremen. 2012. 212 p.
- 27. Nielsen K.F., Huttunen K., Hyvarinen A., Andersen B., Jarvis B.B., Hirvonen M.R. Metabolite profiles of Stachybotrys isolates from water-damaged buildings and their induction of inflammatory mediators and cytotoxicity in macrophages // Mycopathologia. 2002. V. 154. P. 201‒205. https://doi.org/10.1023/a:1016383402963
- 28. Nielsen K.F. Mould growth on building materials. Secondary metabolites, mycotoxins and biomarkers. PhD Thesis. Technical University of Denmark, Lyngby, 2002.
- 29. Pert A. Literature analysis on Stachybotrys chartarum and connections to sick building syndrome // WURJ: Health and Natural Sciences. 2023. V. 12. https://doi.org/10.5206/wurjhns.2022-23.5
- 30. Pieckova E., Jesenska Z. Microscopic fungi in dwellings and their health implications in humans // Ann. Agric. Environ. Med. 1996. V. 6. P. 1‒11.
- 31. Pluskal T., Castillo S., Villar-Briones A., Oresic M. MZmine 2: modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data // BMC Bioinform. 2010. V. 11. Art. 395. https://doi.org/10.1186/1471-2105-11-395
- 32. Samson R.A., Houbraken J., Thrane U., Frisvad J.C., Andersen B. Food and indoor fungi, first edition. Utrecht, Netherlands: CBS-KNAW Fungal Diversity Centre, 2010. 390 p.
- 33. Stecher G., Tamura K., Kumar S. Molecular Evolutionary Genetics Analysis (MEGA) for macOS // Mol. Biol. Evol. 2020. V. 37. P. 1237–1239. https://doi.org/10.1093/molbev/msz312
- 34. Steinert K., Berg N., Kalinin D. Jagels A. Semisynthetic approach toward biologically active derivatives of phenylspirodrimanes from S. chartarum // CS Omega. 2022. V. 7. Art. 2c05681. https://doi.org/10.1021/acsomega.2c05681
- 35. Sunger N., Prasad B., Morgan P., Lennon E.A Quantitative risk assessment for Stachybotrys chartarum // Toxic Mold. Adv. Clin. Toxicol. 2017. V. 2. Art. 116. https://doi.org/10.23880/ACT-16000116
- 36. Vesper S.J., Magnuson M.L., Dearborn D.G., Yike I., Haugland R.A. Initial characterization of the hemolysin stachylisin from Stachybotrys chartarum // Infect. Immun. 2001. V. 69. P. 912–916. https://doi.org/10.1128/iai.69.2.912-916.2001
- 37. Vesper S.J., Vesper M.J. Stachylysin may be a cause of hemorrhaging in humans exposed to Stachybotrys chartarum // Infect. Immun. 2002. V. 70. P. 2065–2069. https://doi.org/10.1128/iai.70.4.2065-2069.2002
- 38. Ulrich S., Niessen L., Ekruth J., Schafer C. Truncated satratoxin gene clusters in selected isolates of the atranone chemotype of Stachybotrys chartarum (Ehrenb.) S. Hughes // Mycotoxin Res. 2020. V. 36. P. 83–91. https://doi.org/10.1007/s12550-019-00371-x
- 39. Ulrich S., Lang K., Niessen L., Baschien C., Kosicki R., Twaruzek M., Straubinger R.K., Ebel F. The evolution of the satratoxin and atranone gene clusters of Stachybotrys chartarum // J. Fungi. 2022. V. 8. Art. 340. https://doi.org/ 10.3390/jof8040340
- 40. White T.J., Bruns T.D., Lee S.B., Taylor J.W., Innis M.A., Gelfand D.H., Sninsky J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protocols: A guide to methods and applications. Part Three. Genetics and Evolution / Eds. T.J. White, T.D. Bruns, S.B. Lee, J.W. Taylor. 1990. P. 315–322. https://doi.org/10.1016/b978-0-12-372180-8.50042-1
- 41. Zhang H., Yang M.-H., Zhuo F.-F., Gao N., Cheng X.-B., Wang X.-B., Pei Y.-H., Kong L.-Y. Seven new cytotoxic phenylspirodrimane derivatives from the endophytic fungus Stachybotrys chartarum // RSC Adv. 2019. V. 9. P. 3520–3531. https://doi.org/10.1039/C8RA10195G