- Код статьи
- S3034546425060142-1
- DOI
- 10.7868/S3034546425060142
- Тип публикации
- Статья
- Статус публикации
- Опубликовано
- Авторы
- Том/ Выпуск
- Том 94 / Номер выпуска 6
- Страницы
- 664-675
- Аннотация
- Исследовано антифунгальное действие оболочечных наночастиц аспарагината хитозана, полученных самосборкой in situ протонированных макроцепей, в отношении 9 видов аскомицетов и 2 видов базидиомицетов различных физиолого-экологических групп и при искусственном заражении проростков пшеницы мягкой патогенным грибом Rhizoctonia sp. в культуре in vitro. Установлено, что биопрепарат обладает антифунгальной активностью против широкого круга почвообитающих сапротрофных и фитопатогенных грибов, возрастающей с увеличением концентрации препарата в диапазоне 0.001–0.1 г/дл. Подавление роста мицелия под влиянием наночастиц отмечено для грибов Trichoderma harzianum (до 81.3%), Fusarium oxysporum (39.1%), Schizophyllum commune (37.9%), Lecanicillum aphanocladii (30.4%), Alternaria sp. (33.0%), Botrytis sp. (30.0%), Trichoderma viride (25.3%), Sclerotinia cf. Sclerotiorum (18.0%), Rhizoctonia sp. (15.0%), Talaromyces sayulltensis (7.0%) и Pleurotus ostreatus var. Florida (6.1%). Вместе с тем обнаружено стимулирующее влияние на рост выделенного из ризосферы аскомицета T. sayulltensis (20%) низкой концентрации наночастиц. Rhizoctonia sp. в культуре in vitro в сравнении другими фитопатогенами демонстрировал более высокую устойчивость к биопрепарату, однако обработка семян дисперсией наночастиц с последующим выращиванием на искусственном инфекционном фоне в присутствии спор гриба снижала степень поражения и уровень развития болезни растения до 33%. Обсуждаются возможные механизмы антифунгального действия наночастиц хитозана. Полученные данные позволяют предложить препараты на основе дисперсии наночастиц аспарагината хитозана в качестве безопасного биоразлагаемого антифунгального препарата в практике защиты растений от фитопатогенных грибов.
- Ключевые слова
- аспарагинат хитозана наночастицы аскомицеты базидиомицеты антифунгальная активность
- Дата публикации
- 01.06.2025
- Год выхода
- 2025
- Всего подписок
- 0
- Всего просмотров
- 1
Библиография
- 1. Актуганов Г.Э., Сафина В.Р., Галимзянова Н.Ф., Кузьмина Л.Ю., Гильванова Е.А., Бойко Т.Ф., Мелентьев А.И. Устойчивость к хитозану бактерий и микромицетов, различающихся по способности к продукции внеклеточных хитиназ и хитозаназ // Микробиология. 2018. Т. 87. С. 599–609.
- 2. Aktuganov G.E., Safina V.R., Galimzianova N.F., Kuz’mina L.Y., Gilvanova E.A., Boyko T.F., Melent’ev A.I. Chitosan resistance of bacteria and micromycetes differing in ability to produce extracellular chitinases and chitosanases // Microbiology (Moscow). 2018. V. 87. P. 716‒724.
- 3. Варламов В.П., Ильина А.В., Шагдарова Б.Ц., Луньков А.П., Мысякина И.С. Хитин/хитозан и его производные: фундаментальные и прикладные аспекты // Успехи биол. химии. 2020. Т. 60. С. 317–368.
- 4. Varlamov V.P., Il’ina A.V., Shagdarova B.Ts., Lunkov A.P., Mysyakina I.S. Chitin/chitosan and its derivatives: fundamental problems and practical approaches // Biochemistry (Moscow). 2020. V. 85. Suppl. 1. P. S154‒S176. https://doi.org/10.1134/S0006297920140084
- 5. Варламов В.П., Мысякина И.С. Хитозан в биологии, микробиологии, медицине и сельском хозяйстве // Микробиология. 2018. Т. 87. С. 595–598.
- 6. Varlamov V.P., Mysyakina I.S. Chitosan in biology, microbiology, medicine, and agriculture // Microbiology (Moscow). 2018. V. 87. P. 712‒715.
- 7. ГОСТ 12044-93 “Межгосударственный стандарт на семена сельскохозяйственных культур. Методы определения зараженности болезнями”. М: Стандартинформ, 2011. 57 с.
- 8. Децына А.А., Хатнянский В.И., Илларионова И.В., Арасланова Н.М., Саукова С.Л., Ивебор М.В. Мониторинг болезней на сортах подсолнечника селекции ВНИИМК // Масличные культуры. 2021. № 1 (185). С. 67–72.
- 9. Ильина А.В., Шагдарова Б.Ц., Луньков А.П., Куликов С.Н., Варламов В.П. Исследование антимикотической активности in vitro металлокомплексов кватернизированного производного хитозана с ионами меди // Микробиология. 2017. Т. 86. С. 586–592.
- 10. Il’ina A.V., Shagdarova B.T., Lun’kov A.P., Varlamov V.P., Kulikov S.N. In vitro antifungal activity of metal complexes of a quaternized chitosan derivative with copper ions // Microbiology (Moscow). 2017. V. 86. P. 590‒595.
- 11. Пирниязов К.К., Асракулова Д.И., Рашидова С.Ш. Синтез и противомикробные свойства наноаскорбата хитозана Bombyx mori // Вестн. МГУ. Сер. 2: Химия. 2024. Т. 65. С. 424–430.
- 12. Позднякова Н.Н., Дубровская Е.В., Гринев В.С., Турковская О.В. Перспективы использования ксилотрофных грибов Pleurotus ostreatus Florida и Schizophyllum commune для микоремедиации почв, загрязненных нефтяными углеводородами и поверхностно-активными веществами // Биотехнология. 2021. Т. 37. № 5. С. 108–116.
- 13. Ткаченко О.В., Каргаполова К.Ю., Денисова А.Ю., Шипенок К.М., Шиповская А.Б. Биопрепарат для стимуляции роста, развития растений и ингибирования фитопатогенов // Патент РФ. 2025. № 2841251.
- 14. Шипенок К.М., Луговицкая Т.Н., Шиповская А.Б. Процессы структурообразования при получении наночастиц Lи D-аспарагината хитозана // Журн. физ. химии. 2024. Т. 98. № 8. С. 133–141.
- 15. Шиповская А.Б., Луговицкая Т.Н., Зудина И.В. Биоцидная активность наночастиц аспарагината хитозана // Микробиология. 2023. Т. 92. С. 68–76.
- 16. Shipovskaya A.B., Lugovitskaya T.N., Zudina I.V. Biocidal activity of chitosan aspartate nanoparticles // Microbiology (Moscow). 2023. V. 92. P. 75‒82. https://doi.org/10.1134/S0026261722602378
- 17. Akther T., Hemalatha S. Mycosilver nanoparticles: synthesis, characterization and its efficacy against plant pathogenic fungi // J. Bionanosci. 2019. V. 9. P. 296–301.
- 18. Andreolli M., Lampis S., Brignoli P., Vallini G. Trichoderma longibrachiatum Evx1 is a fungal biocatalyst suitable for the remediation of soils contaminated with diesel fuel and polycyclic aromatic hydrocarbons // Environ. Sci. Pollut. Res. Int. 2016. V. 23. P. 9134–9143.
- 19. Asemoloye M.D., Ahmad R., Jonathan S.G. Synergistic action of rhizospheric fungi with Megathyrsus maximus root speeds up hydrocarbon degradation kinetics in oil polluted soil // Chemosphere. 2017. V. 187. P. 1–10. https://doi.org/10.1016/j.chemosphere.2017.07.158
- 20. Bezalel L., Hadar Y., Cerniglia C. Enzymatic mechanisms involved in phenanthrene degradation by the white rot fungus Pleurotus ostreatus // Appl. Environ. Microbiol. 1997. V. 63. P. 2495–2501.
- 21. Hassan E.O., Shoala T., Attia A.M.F., Badr O.A.M., Mahmoud S.Y.M., Farrag E.S.H., EL-Fiki I.A.I. Chitosan and nano-chitosan for management of Harpophora maydis: approaches for investigating antifungal activity, pathogenicity, maize-resistant lines, and molecular diagnosis of plant infection // J. Fungi. 2022. V. 8. Art. 509. https://doi.org/10.3390/jof8050509
- 22. Hernández-López N.A., Plascencia‐Jatomea M., Del‐Toro‐Sánchez C.L., López‐Saiz C.M., Morales-Rodríguez S., Martínez‐Téllez M.Á., Quintana-Obregón E.A. Antifungal activity of nanochitosan in Colletotrichum musae and Colletotrichum chrysophillum // Polysaccharides. 2025. V. 6. Art. 4. https://doi.org/10.3390/polysaccharides6010004
- 23. Ing L.Y., Zin N.M., Sarwar A., Katas H. Antifungal activity of chitosan nanoparticles and correlation with their physical properties // Int. J. Biomater. 2012. V. 2012. Art. 632698. https://doi.org/10.1155/2012/632698
- 24. Jiménez-Pérez O., Gallegos‐Morales G., Castro del Ángel E., Hernández-Castillo F.D., Castillo-Reyes F. Fungicidal activity of chitosan in synergy with Trichoderma harzianum and Bacillus subtilis for the control of chili wilt disease // Agrociencia. 2025. V. 59. Art. 3059. http://dx.doi.org/10.47163/agrociencia.v59i1.3059
- 25. Khambhaty Y., Ananth S., Sreeram K.J., Rao J.R., Nair B.U. Dual utility of a novel, copper enhanced laccase from Trichoderma aureoviridae // Int. J. Biol. Macromol. 2015. V. 81. P. 69–75.
- 26. Kong M., Chen X.G., Xing K., Park H.J. Antimicrobial properties of chitosan and mode of action: a state of the art review // Int. J. Food Microbiol. 2010. V. 144. P. 51–63.
- 27. Li W., Huang W., Zhou J.-Y., Wang J.-J., Liu J., Li Y. Evaluation and control of Alternaria alternata causing leaf spot in soybean in Northeast China // J. Appl. Microbiol. 2023. V. 134. Art. lxad004. https://doi.org/10.1093/jambio/lxad004
- 28. Luangtana-Anan M., Nunthanid J., Limmatvapirat S. Potential of different salt forming agents on the formation of chitosan nanoparticles as carriers for protein drug delivery systems // J. Pharm. Investig. 2019. V. 49. P. 37–44.
- 29. Lugovitskaya T.N., Shipovskaya A.B., Shmakov S.L., Shipenok X.M. Formation, structure, properties of chitosan aspartate and metastable state of its solutions for obtaining nanoparticles // Carbohydr. Polym. 2022. V. 277. Art. 118773. https://doi.org/10.1016/j.carbpol.2021.118773
- 30. Mahoney A.K., Babiker E.M., Paulitz T.C., See D.R., Okubara P.A., Hulbert S.H. Characterizing and mapping resistance in synthetic-derived wheat to rhizoctonia root rot in a green bridge environment // Phytopathol. 2016. V. 106. P. 1170–1176.
- 31. Malinkina O.N., Shmakov S.L., Shipovskaya A.B. Structure, the energy, sorption and biological properties of chiral salts of chitosan with Land D-ascorbic acid // Int. J. Biol. Macromol. 2024. V. 257. Part 2. Art. 128731. https://doi.org/10.1016/j.ijbiomac.2023.128731
- 32. Maluin F.N., Hussein M.Z. Chitosan-based agronanochemicals as a sustainable alternative in crop protection // Molecules. 2020. V. 25. Art. 1611. https://doi.org/10.3390/molecules25071611
- 33. Manikandan A., Sathiyabama M. Preparation of chitosan nanoparticles and its effect on detached rice leaves infected with Pyricularia grisea // Int. J. Biol. Macromol. 2016. V. 84. P. 58–61.
- 34. Mendez-Liter J., de Eugenio L.I., Nieto-Dominguez M., Prieto A., Martinez M.J. Hemicellulases from Penicillium and Talaromyces for lignocellulosic biomass valorization: a review // Bioresour. Technol. 2021. V. 324. Art. 124623. https://doi.org/10.1016/j.biortech.2020.124623
- 35. Nguyen T.K.A., Ho M.N., Tran G.-B. Fungicidal activities of chitosan-stabilized copper nanoparticles on Magnaporthe oryzae, Rhizoctonia solani, and Phytophthora capsica // Nova Biotechnol. Chim. 2023. V. 22. Art. e1656. http://dx.doi.org/10.34135/nbc.1656
- 36. Oh J.-W., Chun S.C., Chandrasekaran M. Preparation and in vitro characterization of chitosan nanoparticles and their broad-spectrum antifungal action compared to antibacterial activities against phytopathogens of tomato // Agronomy. 2019. V. 9. Art. 21. http://dx.doi.org/10.3390/agronomy9010021
- 37. Pozdnyakova N., Muratova A., Bondarenkova A., Turkovskaya O. Degradation of a model mixture of PAHs by bacterial-fungal co-cultures // Front. Biosci. (Elite Ed). 2023. V. 15. Art. 26. https://doi.org/10.31083/j.fbe1504026
- 38. Poznanski P., Hameed A., Orczyk W. Chitosan and chitosan nanoparticles: parameters enhancing antifungal activity // Molecules. 2023. V. 28. Art. 2996. https://doi.org/10.3390/molecules28072996
- 39. Regalado V., Rodriguez A., Perestelo F., Carnicero A., de la Fuente G., Falcon M. Lignin degradation and modification by the soil-inhabiting fungus Fusarium proliferatum // Appl. Environ. Microbiol. 1997. V. 63. P. 3716–3718.
- 40. Ryley M.J., Thompson S., Harveson R.M., Gulya T.J., Block C.C., Mathew F.M., Markell S.G. Sunflower head rot diseases: Botrytis head rot and bacterial head rot // Plant Health Prog. Diagnostic Guide. 2025. V. 26. http://dx.doi.org/10.1094/PHP-08-24-0077-DG
- 41. Sahab A., Waly A., Sabbour M., Nawar L.S. Synthesis, antifungal and insecticidal potential of Chitosan (CS)-g-poly (acrylic acid)(PAA) nanoparticles against some seed borne fungi and insects of soybean // Int. J. Chem. Tech. Res. 2015. V. 8. P. 589–598.
- 42. Saharan V., Mehrotra A., Khatik R., Rawal P., Sharma S.S., Pal A. Synthesis of chitosan based nanoparticles and their in vitro evaluation against phytopathogenic fungi // Int. J. Biol. Macromol. 2013. V. 62. P. 677‒683.
- 43. Shih P.-Yu, Liao Yu-T., Tseng Yi-K., Deng Fu-S., Lin C.-H. A potential antifungal effect of chitosan against Candida albicans is mediated via the inhibition of saga complex component expression and the subsequent alteration of cell surface integrity // Front. Microbiol. 2019. V. 10. Art. 602. https://doi.org/10.3389/fmicb.2019.00602
- 44. Shipenok X.M., Mazhikenova A.M., Glukhovskoy E.G., Shipovskaya A.B. Phase separation of L-menthol an aqueous dispersion of biologically active nanoparticles of chitosan Land D-aspartate // J. Biomed. Photon. Eng. 2024. V. 10. P. 040316-1‒040316-7.
- 45. Shipovskaya A.B., Ushakova O.S., Volchkov S.S., Shipenok X.M., Shmakov S.L., Gegel N.O., Burov A.M. Chiral nanostructured glycerohydrogel sol–gel plates of chitosan Land D-aspartate: supramolecular ordering and optical properties // Gels. 2024. V. 10. Art. 427. https://doi.org/10.3390/gels10070427
- 46. Thion C., Cebron A., Beguiristain T., Leyval C. Inoculation of PAH-degrading strains of Fusarium solani and Arthrobacter oxydans in rhizospheric sand and soil microcosms: Microbial interactions and PAH dissipation // Biodegradation. 2013. V. 24. P. 569‒581.
- 47. Xing K., Shen X., Zhu X., Ju X., Miao X., Tian J., Feng Z., Peng X., Jiang J., Qin S. Synthesis and in vitro antifungal efficacy of oleoyl-chitosan nanoparticles against plant pathogenic fungi // Int. J. Biol. Macromol. 2016. V. 82. P. 830‒836.
- 48. Younes I., Sellimi S., Rinaudo M., Jellouli K., Nasri M. Influence of acetylation degree and molecular weight of homogeneous chitosans on antibacterial and antifungal activities // Int. J. Food Microbiol. 2014. V. 185. P. 57‒63.
- 49. Zare R., Gams W. Lecanicillium aphanocladii // IMI Descriptions of Fungi and Bacteria. 2003. V. 1563. № 157. P. 1‒2. http://dx.doi.org/10.1079/DFB/20056401563