RAS BiologyМикробиология Microbiology

  • ISSN (Print) 0026-3656
  • ISSN (Online) 3034-5464

T4-Like Cyanophages of Lake Baikal: Genetic Diversity and Biogeography

PII
10.31857/S0026365624020216-1
DOI
10.31857/S0026365624020216
Publication type
Status
Published
Authors
Volume/ Edition
Volume 93 / Issue number 2
Pages
213-216
Abstract
The work deals with investigation of genetic diversity and biogeography of T4-like cyanophages from the shallow bay of the Posolsk Sor (Lake Baikal), based on analysis of the g20 marker gene. High diversity of g20 gene fragments and their uniqueness were revealed. The greatest similarity was noted with the previously obtained sequences from Lake Baikal and with those from freshwater ecosystems: oligotrophic Lake Green, Lake Round, oligomesotrophic Lake Ancy, and mesotrophic Lake Bourget. From the point of view of biogeography, it was determined that the phage sequences were similar to the previously obtained ones from different Lake Baikal ecotopes than to those from other ecosystems.
Keywords
цианофаги генетическое разнообразие биогеография ген g20 оз. Байкал
Date of publication
15.03.2024
Year of publication
2024
Number of purchasers
0
Views
35

References

  1. 1. Бутина Т.В., Потапов С.А., Белых О.И., Дамдинсурэн Н., Чойдаш Б. Генетическое разнообразие цианофагов семейства Myoviridae в озере Байкал // Известия ИГУ. Сер. Биология. Экология. 2012. Т. 5. № 3. С. 17–22.
  2. 2. Бутина Т.В., Потапов С.А., Белых О.И., Беликов С.И. Генетическое разнообразие цианофагов семейства Myoviridae в составе сообщества байкальской губки Lubomirskia baicalensis // Генетика. 2015. Т. 51. С. 384–388.
  3. 3. Butina T.V., Potapov S.A., Belykh O.I., Belikov S.I. Genetic diversity of the family Myoviridae cyanophages in the community of the Baikal sponge Lubomirskia baicalensis // Genetics. 2015. V. 51. P. 313–317.
  4. 4. Andrews S. FastQC: A Quality Control Tool for High Throughput Sequence Data // 2010. [Online]. Available online at:
  5. 5. http://www.bioinformatics.babraham.ac.uk/projects/fastqc/.
  6. 6. Belykh O.I., Sorokovikova E.G, Saphonova A., Tikhonova I.V. Autotrophic picoplankton of Lake Baikal: composition, abundance, and structure // Hydrobiologia. 2006. V. 568S. P. 9‒17.
  7. 7. Bolger A.M., Lohse M., Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data // Bioinformatics. 2014. V. 30. P. 2114–2120.
  8. 8. Edgar R.C. Search and clustering orders of magnitude faster than BLAST // Bioinformatics. 2010. V. 26. P. 2460‒2461.
  9. 9. Fuller N.J., Wilson W.H., Joint I.R., Mann N.H. Occurrence of a sequence in marine cyanophages similar to that of T4 g20 and its application to PCR-based detection and quantification techniques // Appl. Environ. Microbiol. 1998. V. 64. P. 2051–2060.
  10. 10. Hall T. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT // Nucleic Acids Symp. Ser. 1999. V. 41. P. 95–98.
  11. 11. Huelsenbeck J.P., Ronquist F. MRBAYES: bayesian inference of phylogenetic trees // Bioinformatics. 2001. V. 17. P. 754‒755.
  12. 12. Kumar S. Stecher G., Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets // Mol. Biol. Evol. 2016. V. 33. P. 1870‒1874.
  13. 13. Potapov S.A., Tikhonova I.V., Krasnopeev A.Y., Suslova M.Y., Zhuchenko N.A., Drucker V.V., Belykh O.I. Communities of T4-like bacteriophages associated with bacteria in Lake Baikal: diversity and biogeography // Peer J. 2022. V. 10. Art. e12748.
  14. 14. Rambaut A. 2010. FigTree v1.3.1. Institute of Evolutionary Biology, University of Edinburgh, Edinburgh. http://tree.bio.ed.ac.uk/software/figtree/ (дата обращения 15.01.2023).
  15. 15. Rozas J., Ferrer-Mata A., Sánchez-DelBarrio J.C., Guirao-Rico S., Librado P., Ramos-Onsins S.E., Sánchez-Gracia A. DnaSP 6: dNA sequence polymorphism analysis of large data sets // Mol. Biol. Evol. 2017. V. 34. P. 3299–3302.
  16. 16. Shtykova Yu.R., Suslova M. Yu., Drucker V.V., Belykh O.I. Modern approach to the assessment of the sanitary-bacteriological condition of Lake Baikal // Limnol. Freshwater Biol. 2019. V. 2. P. 210‒217.
  17. 17. Suttle C.A. Marine viruses — major players in the global ecosystem // Nature Revs. Microbiol. 2007. V. 5. P. 801–812.
  18. 18. Wang K., Chen F. Genetic diversity and population dynamics of cyanophage communities in the Chesapeake Bay // Aquat. Microb. Ecol. 2004. V. 34. P. 105–116.
  19. 19. Wilhelm S.W., Carberry M.J., Eldridge M.L., Poorvin L., Saxton M.A., Doblin M.A. Marine and freshwater cyanophages in a Laurentian Great Lake: evidence from infectivity assays and molecular analyses of g20 genes // Appl. Environ. Microbiol. 2006 V. 72. P. 4957–4963.
  20. 20. Zhong Y., Chen F., Wilhelm St.W., Poorvin L., Hodson R.E. Phylogenetic diversity of marine cyanophage isolates and natural virus communities as revealed by sequences of viral capsid assembly protein gene g20 // Society. 2002. V. 68. P. 1576–1584.
  21. 21. Zhong X., Jacquet S. Prevalence of viral photosynthetic and capsid protein genes from cyanophages in two large and deep perialpine lakes // Appl. Environ. Microbiol. 2013. V. 79. P. 7169–7178.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library