RAS BiologyМикробиология Microbiology

  • ISSN (Print) 0026-3656
  • ISSN (Online) 3034-5464

CryoEM Investigation of Three-Dimentional Structure of the Stx-Converting Bacteriophage ϕ24B

PII
10.31857/S0026365624030095-1
DOI
10.31857/S0026365624030095
Publication type
Status
Published
Authors
Volume/ Edition
Volume 93 / Issue number 3
Pages
336-339
Abstract
A modified method for culturing, concentrating, and purifying phage ϕ24B preparations was developed. In particular, a new lysogenic phage-producing strain lacking flagella was used, induction conditions were optimized, and purification in a sucrose gradient and concentration by deposition on a Freon 113 cushion were used. Using this method, a preparation of the Stx-converting bacteriophage ϕ24B was obtained, which was suitable for direct analysis by the cryoEM method. Based on cryoEM data for this phage, the first primary three-dimensional reconstruction of its virions was performed. The structure of the phage ϕ24B tail is described. It was shown that the adsorption apparatus of this virus is represented by six thin lateral fibrils and an axial fibril located at the end of the tail. This arrangement of the tail structure is consistent with the previously proposed hypothesis based on analysis of the receptor binding proteins (RBPs) of this bacteriophage.
Keywords
Stx-фаги крио-ЭМ структура вириона рецептор-распознающие белки Escherichia coli STEC ультрацентрифугирование
Date of publication
15.05.2024
Year of publication
2024
Number of purchasers
0
Views
33

References

  1. 1. Allison H. E., Sergeant M. J., James C. E., Saunders J. R., Smith D. L., Sharp R. J., Marks T. S., McCarthy A. J. Immunity profiles of wild-type and recombinant shiga-like toxin-encoding bacteriophages and characterization of novel double lysogens // Infect. Immun. 2003. V. 71. P. 3409‒3418.
  2. 2. Blake K. S., Choi J., Dantas G. Approaches for characterizing and tracking hospital-associated multidrug-resistant bacteria // Cell. Mol. Life Sci. 2021. V. 78. P. 2585‒2606.
  3. 3. Callaway T. R., Carr M. A., Edrington T. S., Anderson R. C., Nisbet D. J. Diet, Escherichia coli O157:H7, and cattle: a review after 10 years // Curr. Iss. Mol. Biol. 2009. V. 11. P. 67‒79.
  4. 4. de Oliveira G. A., Silva J. L. Cryo-EM to visualize the structural organization of viruses // Curr. Opin. Virol. 2021. V. 49. P. 86‒91.
  5. 5. Freedman S. B., Xie J., Neufeld M. S., Hamilton W. L., Hartling L., Tarr P. I., Alberta Provincial Pediatric Enteric Infection T., Nettel-Aguirre A., Chuck A., Lee B., Johnson D., Currie G., Talbot J., Jiang J., Dickinson J., Kellner J., MacDonald J., Svenson L., Chui L., Louie M., Lavoie M., Eltorki M., Vanderkooi O., Tellier R., Ali S., Drews S., Graham T., Pang X. L. Shiga toxin-producing Escherichia coli infection, antibiotics, and risk of developing hemolytic uremic syndrome: a meta-analysis // Clin. Infect. Dis. 2016. V. 62. P. 1251‒1258.
  6. 6. Golomidova A. K., Efimov A. D., Kulikov E. E., Kuznetsov A. S., Belalov I. S., Letarov A. V. O antigen restricts lysogenization of non-O157 Escherichia coli strains by Stx-converting bacteriophage phi24B // Sci Rep. 2021. V. 11. Art. 3035.
  7. 7. Kulikov E. E., Golomidova A. K., Prokhorov N. S., Ivanov P. A., Letarov A. V. High-throughput LPS profiling as a tool for revealing of bacteriophage infection strategies // Sci. Rep. 2019. V. 9. Art. 2958.
  8. 8. Llarena A. K., Aspholm M., O’Sullivan K., Wegrzyn G., Lindback T. Replication region analysis reveals non-lambdoid Shiga toxin converting bacteriophages // Front. Microbiol. 2021. V. 12. Art. 640945.
  9. 9. Mathieu A., Dion M., Deng L., Tremblay D., Moncaut E., Shah S. A., Stokholm J., Krogfelt K. A., Schjorring S., Bisgaard H., Nielsen D. S., Moineau S., Petit M. A. Virulent coliphages in 1-year-old children fecal samples are fewer, but more infectious than temperate coliphages // Nat. Commun. 2020. V. 11. Art. 378.
  10. 10. Muniesa M., Serra-Moreno R., Jofre J. Free Shiga toxin bacteriophages isolated from sewage showed diversity although the stx genes appeared conserved // Environ. Microbiol. 2004. V. 6. P. 716‒725.
  11. 11. Riley L. W. Pandemic lineages of extraintestinal pathogenic Escherichia coli // Clin. Microbiol. Infect. 2014. V. 20. P. 380‒390.
  12. 12. Rollauer S. E., Sooreshjani M. A., Noinaj N., Buchanan S. K. Outer membrane protein biogenesis in Gram-negative bacteria // Philos. Trans. R. Soc. Lond. B. Biol. Sci. 2015. V. 370. Art. 1679.
  13. 13. Sausset R., Petit M. A., Gaboriau-Routhiau V., De Paepe M. New insights into intestinal phages // Mucosal Immunol. 2020. V. 13. P. 205‒215.
  14. 14. Smith D. L., James C. E., Sergeant M. J., Yaxian Y., Saunders J. R., McCarthy A.J., Allison H. E. Short-tailed stx phages exploit the conserved YaeT protein to disseminate Shiga toxin genes among enterobacteria // J. Bacteriol. 2007. V. 189. P. 7223‒7233.
  15. 15. Smith D. L., Rooks D. J., Fogg P. C., Darby A. C., Thomson N. R., McCarthy A.J., Allison H. E. Comparative genomics of Shiga toxin encoding bacteriophages // BMC Genomics. 2012. V. 13. Art. 311.
  16. 16. Todd E. C.D. Preliminary estimates of costs of foodborne disease in Canada and costs to reduce salmonellosis // J. Food Prot. 1989. V. 52. P. 586‒594.
  17. 17. Trachtman H., Austin C., Lewinski M., Stahl R. A. Renal and neurological involvement in typical Shiga toxin-associated HUS // Nat. Rev. Nephrol. 2012. V. 8. P. 658‒669.
  18. 18. Zhang J. T., Yang F., Du K., Li W. F., Chen Y., Jiang Y. L., Li Q., Zhou C. Z. Structure and assembly pattern of a freshwater short-tailed cyanophage Pam1 // Structure. 2022. V. 30. P. 240‒251. e244.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library