RAS BiologyМикробиология Microbiology

  • ISSN (Print) 0026-3656
  • ISSN (Online) 3034-5464

Bioinformatic and functional analysis of the pSID siderophore biosynthesis plasmid of Rhodococcus pyridinivorans 5Ap

PII
10.31857/S0026365624040034-1
DOI
10.31857/S0026365624040034
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 93 / Issue number 4
Pages
414-424
Abstract
Complete genome sequencing of R. pyridinivorans strain 5Ар revealed the pSID plasmid (CP063453.1) 250428 bp in size. The gene responsible for replication of this plasmid is, most probably, dnaB. The genes which may be involved in the replication (dnaB, ssb) and plasmid separation after replication (parA) showed the highest similarity to the determinants located on large (224‒343 kb) plasmids of rhodococci: unnamed1 of R. pyridinivorans YF3, unnamed1 of R. rhodochrous LH-B3, pRJH1 of R. pyridinivorans YC-JH2, pRDE01 of Rhodococcus sp. RDE2, and pRho-VOC14-C342 of R. opacus VOC-14. The pSID plasmid was found to contain two loci responsible for the synthesis of secondary metabolites, one of them determining the synthesis of a polyketide compound (similar sequences have been revealed on plasmids of other rhodococci) and the other one probably determines the synthesis of a siderophore: the genes for biosynthesis of this compound (sid1–5) exhibited the highest similarity (not exceeding 75%) with the sequences from Streptomyces vilmorinianum YP1 (CP040244.1), S. ficellus NRRL 8067 (CP034279.1), Streptomyces sp. NBC00162 (CP102509.1), and some other streptomycetes, while showing no similarity to the known siderophore biosynthesis genes of rhodococci. The locus of the pSID plasmid responsible for the siderophore synthesis had a unique organization, since transcription of the sid5 (iucC) gene occurs in the opposite direction, while in other bacteria it belongs to an operon and is located at one of its termini. Inactivation of the sid1 gene was found to result in decreased antagonistic activity of R. pyridinivorans 5Ар against plant-pathogenic bacteria P. carotovorum 2.18, lower resistance to iron and cadmium ions and arsenate, as well as in emergence of phytotoxic properties against radish, while wild-type bacteria exhibit plant growth-promoting activity.
Keywords
Rhodococcus плазмиды сидерофоры стимулирующая рост растений активность антагонистическая активность устойчивость к тяжелым металлам
Date of publication
15.07.2024
Year of publication
2024
Number of purchasers
0
Views
19

References

  1. 1. Глик Б., Пастернак Дж. Молекулярная биотехнология. М: Мир, 2002. 589 c.
  2. 2. Мандрик М. И., Охремчук А. Э., Валентович Л. Н., Трушлис Э. В., Ларченко А. Ю., Василенко С. Л. Характеристика генетических локусов, определяющих деградацию фенола, в геноме бактерий Rhodococcus pyridinivorans 5Ap // Экспериментальная биология и биотехнология. 2024. №1. С. 27–40.
  3. 3. Маниатис Т., Фрич Э., Сэмбрук Дж. Методы генетической инженерии: молекулярное клонирование. М.: Мир, 1984. 479 с.
  4. 4. Мейнелл Дж., Мейнелл Э. Экспериментальная микробиология. М.: Мир, 1967. 320 c.
  5. 5. Миллер Дж. Эксперименты в молекулярной генетике. М.: Мир, 1976. 436 с.
  6. 6. Титок М. А. Плазмиды грамположительных бактерий. Минск: Изд-во БГУ, 2004. 120 с.
  7. 7. Чернявская М. И. Характеристика штаммов нафталинутилизирующих бактерий рода Rhodococcus // Труды БГУ: Микробиология. 2016. Т. 11. Ч. 1. С. 190–197.
  8. 8. Ahsan S., Kabir M. S. Linear plasmids and their replication // Stamford J. Microbiol. 2013. V. 2. P. 1‒5.
  9. 9. Aznar A., Chen N. W., Rigault M., Riache N., Joseph D., Desmaële D., Mouille G., Boutet S., Soubigou-Taconnat L., Renou J. P., Thomine S., Expert D., Dellagi A. Scavenging iron: a novel mechanism of plant immunity activation by microbial siderophores // Plant Physiol. 2014. V. 164. P. 2167‒2183.
  10. 10. Blin K., Shaw S., Augustijn H.E, Reitz Z. L., Biermann F., Alanjary M., Fetter A., Terlouw B. R., Metcalf W. W., Helfrich E. J.N., van Wezel G. P., Medema M. H., Weber T. antiSMASH 7.0: New and improved predictions for detection, regulation, chemical structures and visualization // Nucl. Acids Res. 2023. V. 51. P. W46‒W50. https://doi.org/10.1093/nar/gkad344
  11. 11. Bullock W. O. XL1-Blue: a high efficiency plasmid transforming recA Escherichia coli strain with beta-galactosidase selection // BioTechniques. 1987. V. 5. P. 376–378.
  12. 12. Chan H. Y., Jensen S. O., LeBard R.J., Figgett W. A., Lai E., Simpson A. E., Brzoska A. J., Davies D. S., Connolly A. M., Cordwell S. J., Travis B. A., Salinas R., Skurray R. A., Firth N., Schumacher M. A. Molecular analysis of pSK1 par: a novel plasmid partitioning system encoded by staphylococcal multiresistance plasmids // J. Mol. Biol. 2022. V. 434. Art. 167770.
  13. 13. Cserháti M., Kriszt B., Krifaton Cs., Szoboszlay S., Háhn J., Tóth Sz., Nagy I., Kukolya J. Mycotoxin-degradation profile of Rhodococcus strains // Int. J. Food Microbiol. 2013. V. 166. P. 176‒185.
  14. 14. Dimkpa C. O., Svatoš A., Dabrowska P., Schmidt A., Boland W., Kothe E. Involvement of siderophores in the reduction of metal-induced inhibition of auxin synthesis in Streptomyces spp. // Chemosphere. 2008. V. 74. P. 19‒25.
  15. 15. Grant J. R., Enns E., Marinier E., Mandal A., Herman E. K., Chen C., Graham M., Van Domselaar G., Stothard P. Proksee: in-depth characterization and visualization of bacterial genomes // Nucl. Acids Res. 2023. V. 51. P. W484‒W492. https://doi.org/10.1093/nar/gkad326
  16. 16. Howland C. J., Rees C. E., Barth P. T., Wilkins B. M. The ssb gene of plasmid ColIb-P9 // J. Bacteriol. 1989. V. 171. P. 2466–2473.
  17. 17. Iminova L., Delegan Y., Frantsuzova E., Bogun A., Zvonarev A., Suzina N., Anbumani S., Solyanikova I. Physiological and biochemical characterization and genome analysis of Rhodococcus qingshengii strain 7B capable of crude oil degradation and plant stimulation // Biotech. Rep. 2022. V. 35. Art. e00741.
  18. 18. Ji C., Fan Yu, Zhao L. Review on biological degradation of mycotoxins // Animal Nutr. 2016. V. 2. P. 127‒133.
  19. 19. Kriszt R., Krifaton C., Szoboszlay S., Cserháti M., Kriszt B., Kukolya J., Czéh Á., Fehér-Tóth S., Török L., Szőke Z., Kovács K. J., Barna T., Ferenczi S. New zearalenone biodegradation strategy using non-pathogenic Rhodococcus pyridinivorans K408 strain // PLoS One. 2012. V. 7. Art. e43608.
  20. 20. Kuhl T., Felder M., Nussbaumer T., Fischer D., Kublik S., Chowdhury P. S., Schloter M., Rothballer M. De novo genome assembly of a plant-associated Rhodococcus qingshengii strain (RL1) isolated from Eruca sativa Mill. and showing plant growth-promoting properties // Microbiol. Res. Announc. 2019. V. 8. Art. e01106-19. https://doi.org/10.1128/mra.01106-19
  21. 21. Kundu D., Hazra C., Chaudhari A. Biodegradation of 2,6-dinitrotoluene and plant growth promoting traits by Rhodococcus pyridinivorans NT2: identification and toxicological analysis of metabolites and proteomic insights // Biocat. Agricul. Biotech. 2016. V. 8. P. 55‒65.
  22. 22. Metcaff W. W., Jiang W., Wanner B. L. Use of the rep technique for allele replacement to construct new Escherichia coli hosts for maintenance of R6Kgamma origin plasmids at different copy numbers // Gene. 1994. V. 138. P. 1–7.
  23. 23. Oberto J. SyntTax: a web server linking synteny to prokaryotic taxonomy // BMC Bioinformatics. 2013. V. 14. https://doi.org/10.1186/1471-2105-14-4
  24. 24. Presentato А., Piacenza E., Turner R. J., Zannoni D., Cappelletti M. Processing of metals and metalloids by Actinobacteria: cell resistance mechanisms and synthesis of metal (loid)-based nanostructures // Microorganisms. 2020. V. 8. Art. 2027.
  25. 25. Roskova Z., Skarohlid R., McGachy L. Siderophores: an alternative bioremediation strategy? // Sci. Tot. Environ. 2022. V. 819. Art. 153144.
  26. 26. Saha R., Saha N., Donofrio R. S., Bestervelt L L. Microbial siderophores: a mini review // J. Bas. Microbiol. 2013. V. 53. P. 303‒317.
  27. 27. Schäfer A., Tauch A., Jäger W., Kalinowski J., Thierbach G., Pühler A. Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum // Gene. 1994. V. 145. P. 69–73.
  28. 28. Stevens V., Thijs S., McAmmond B., Langill T., Van Hamme J., Weyens N., Vangronsveld J. Draft genome sequence of Rhodococcus erythropolis VSD3, a diesel fuel-degrading and plant growth-promoting bacterium isolated from Hedera helix leaves // Gen. Announc. 2017. V. 5. https://doi.org/10.1128/genomea.01680-16
  29. 29. te Riele H., Michel B., Ehrlich S. D. Single-stranded plasmid DNA in Bacillus subtilis and Staphylococcus aureus // Proc. Natl. Acad. Sci. USA. 1986. V. 83. P. 2541–2545.
  30. 30. Turner S. L., Lilley A. K., Bailey M. J. Two dnaB genes are associated with the origin of replication of PQBR55, an exogenously isolated plasmid from the rhizosphere of sugar beet // FEMS Microbiol. Ecol. 2002. V. 42. P. 209–215.
  31. 31. Vernikos G. S., Parkhill J. Interpolated variable order motifs for identification of horizontally acquired DNA: revisiting the Salmonella pathogenicity islands // Bioinf. 2006 V. 22. P. 2196‒2203.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library