RAS BiologyМикробиология Microbiology

  • ISSN (Print) 0026-3656
  • ISSN (Online) 3034-5464

The role of carbon dioxide in the regulation of bacterial adaptive proliferation

PII
10.31857/S0026365624050145-1
DOI
10.31857/S0026365624050145
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 93 / Issue number 5
Pages
657-661
Abstract
The adaptive proliferation of bacteria or cell division in the absence of an exogenous organic substrate is controlled by density-dependent mechanisms with the participation of AHL- and AI-2-dependent quorum sensing systems. Along with the signaling molecules of these bacterial communication systems, bacterial metabolites that are permanently released during microbial metabolism, for example, CO2, can also participate in regulation and can serve as biomarkers of cell density. It has been established that carbon dioxide is necessary for the adaptive proliferation launch, and the increased content of atmospheric CO2 causes a premature stop to this process. Thus, CO2 is able to regulate the adaptive reactions of bacteria, including, probably, being one of the signals involved in the initiation and termination of the process of adaptive proliferation. It has been shown that CO2 in the form of the bicarbonate ion HCO3- can activate the cAMP-dependent signaling cascade and is also included in the bacterial cell mass.
Keywords
адаптация диоксид углерода клеточная плотность межклеточная коммуникация цАМФ Pectobacterium atrosepticum
Date of publication
15.09.2024
Year of publication
2024
Number of purchasers
0
Views
34

References

  1. 1. Мясник М. Н. Динамика клеточной популяции бактерий при исчезающее малых количествах питательных веществ в среде // Тез. докладов II Всесоюзного совещания “Управляемый синтез и биофизика популяций”. Красноярск, 1969. С. 287.
  2. 2. Braun A., Spona-Friedl M., Avramov M., Elsner M., Baltar F., Reinthaler T., Herndl G., Griebler C. Reviews and syntheses: heterotrophic fixation of inorganic carbon – significant but invisible flux in environmental carbon cycling // Biogeosci. 2021. V. 18. P. 3689‒3700.
  3. 3. Chen Y., Cann M. J., Litvin T. N., Iourgenko V., Sinclair M. L., Levin L. R., Buck J. Soluble adenylyl cyclase as an evolutionarily conserved bicarbonate sensor // Science. 2000. V. 289. Р. 625‒628.
  4. 4. Dehority B. A. Carbon dioxide requirement of various species of rumen bacteria // J. Bacteriol. 1971. V. 105. P. 70‒76.
  5. 5. Gorshkov V., Petrova O., Gogoleva N., Gogolev Y. Cell-to-cell communication in the populations of enterobacterium Erwinia carotovora ssp. atroseptica SCRI1043 during adaptation to stress conditions // FEMS Immunol. Med. Microbiol. 2010. V. 59. P. 378‒385.
  6. 6. Jo B. H., Kim I. G., Seo J. H., Kang D. G., Cha H. J. Engineered Escherichia coli with periplasmic carbonic anhydrase as a biocatalyst for CO2 sequestration // Appl. Environ. Microbiol. 2013. V. 79. Р. 6697‒6705.
  7. 7. Kalia D., Merey G., Nakayama S., Zheng Y., Zhou J., Luo Y., Guo M., Roembke B., Sintim H. O. Nucleotide, c-di-GMP, c-di-AMP, cGMP, cAMP, (p)ppGpp signaling in bacteria and implications in pathogenesis // Chem. Soc. Rev. 2013. V. 42. P. 305‒341.
  8. 8. Merlin C., Masters M., McAteer S., Coulson A. Why is carbonic anhydrase essential to Escherichia coli? //J. Bacteriol. 2003. V. 185. P. 6415‒6424.
  9. 9. Petrova O., Gorshkov V., Daminova A., Ageeva M., Moleleki L. N., Gogolev Y. Stress response in Pectobacterium atrosepticum SCRI1043 under starvation conditions: adaptive reactions at a low population density // Res. Microbiol. 2014. V. 165. Р. 119‒127.
  10. 10. Petrova O., Parfirova O., Gogoleva N., Vorob’ev V., Gogolev Y., Gorshkov V. The role of intercellular signaling in the regulation of bacterial adaptive proliferation // Int. J. Mol. Sci. 2023. V. 24. Art. 7266.
  11. 11. Smith K. S., Ferry J. G. Prokaryotic carbonic anhydrases // FEMS Microbiol. Rev. 2000. V. 24. P. 335‒366.
  12. 12. Sorokin C. Inhibition of cell division by carbon dioxide // Nature. 1962. V. 194. P. 496‒497.
  13. 13. Steegborn C., Litvin T. N., Levin L. R., Buck J., Wu H. Bicarbonate activation of adenylyl cyclase via promotion of catalytic active site closure and metal recruitment // Nat. Struct. Mol. Biol. 2005. V. 12. P. 32‒37.
  14. 14. Stretton S., Goodman A. E. Carbon dioxide as a regulator of gene expression in microorganisms // Antonie Van Leeuwenhoek. 1998. V. 73. P. 79‒85.
  15. 15. Striednig B.; Hilbi H. Bacterial quorum sensing and phenotypic heterogeneity: how the collective shapes the individual // Trends Microbiol. 2022. V. 3. P. 379–389.
  16. 16. Stulke J., Kruger L. Cyclic di-AMP signaling in bacteria // Annu. Rev. Microbiol. 2020. V. 74. P. 159‒179.
  17. 17. Williams P., Cámara M. Quorum sensing and environmental adaptation in Pseudomonas aeruginosa: a tale of regulatory networks and multifunctional signal molecules // Curr. Opin.Microbiol. 2009. V. 12. P. 182–191.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library