RAS BiologyМикробиология Microbiology

  • ISSN (Print) 0026-3656
  • ISSN (Online) 3034-5464

Application of the bacterial C-DAG system to analyze the ability of amyloids to seed protein aggregation in vitro

PII
10.31857/S0026365624050156-1
DOI
10.31857/S0026365624050156
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 93 / Issue number 5
Pages
662-665
Abstract
The search for new amyloid proteins, as well as the study of their properties, is an actual task, which can be solved by a number of different model systems. One of the most popular is the C-DAG approach. It is based on the analysis of aggregation of the investigated proteins on the surface of Escherichia coli cells. According to the original protocol, it can be used to demonstrate one of the characteristic properties of amyloids: the ability to bind the amyloid-specific dye Congo red and demonstrate apple-green birefringence. In addition, the C-DAG technique allows one to analyze the morphology of aggregates and their resistance to detergents. In this work, we tested using Sup35NM as an example whether aggregates on the surface of bacterial cells can act as inducers of aggregation of the corresponding protein.
Keywords
амилоиды C-DAG E. coli кинетика агрегации Sup35
Date of publication
15.09.2024
Year of publication
2024
Number of purchasers
0
Views
34

References

  1. 1. Матиив А. Б., Трубицина Н. П., Матвеенко А. Г., Барбитов Ю. А., Журавлева Г. А., Бондарев С. А. Амилоидные и амилоидоподобные агрегаты: многообразие и кризис термина // Биохимия. 2020. Т. 85. № 9. С. 1213–1239.
  2. 2. Matiiv A. B., Trubitsina N. P., Matveenko A. G., Barbitoff Y. A., Zhouravleva G. A., Bondarev S. A. Amyloid and amyloid-like aggregates: diversity and the term crisis // Biochemistry (Moscow). 2020. V. 85. P. 1011–1034.
  3. 3. Allen K. D., Wegrzyn R. D., Chernova T. A., Müller S., Newnam G. P., Winslett P. A., Wittich K. B., Wilkinson K. D., Chernoff Y. O. Hsp70 chaperones as modulators of prion life cycle: novel effects of Ssa and Ssb on the Saccharomyces cerevisiae prion [PSI+] // Genetics. 2005. V. 169. P. 1227–1242.
  4. 4. Belousov M. V., Bondarev S. A., Kosolapova A. O., Antonets K. S., Sulatskaya A. I., Sulatsky M. I., Zhouravleva G. A., Kuznetsova I. M., Turoverov K. K., Nizhnikov A. A. M60-like metalloprotease domain of the Escherichia coli YghJ protein forms amyloid fibrils. // PLoS One. 2018. V. 13. Art. e0191317.
  5. 5. Chen B., Newnam G. P., Chernoff Y. O. Prion species barrier between the closely related yeast proteins is detected despite coaggregation // Proc. Natl. Acad. Sci. USA. 2007. V. 104. P. 2791–2796.
  6. 6. Chiti F., Dobson C. M. Protein misfolding, amyloid formation, and human disease: a summary of progress over the last decade // Annu. Rev. Biochem. 2017. V. 86. P. 27–68.
  7. 7. Glover J. R., Kowal A. S., Schirmer E. C., Patino M. M., Liu J. J., Lindquist S. Self-seeded fibers formed by Sup35, the protein determinant of [PSI+], a heritable prion-like factor of S. cerevisiae // Cell. 1997. V. 89. P. 811–819.
  8. 8. Kachkin D. V., Volkov K.V, Sopova J.V, Bobylev A. G., Fedotov S. A., Inge-Vechtomov S.G., Galzitskaya O. V., Chernoff Y. O., Rubel A. A., Aksenova A. Y. Human RAD51 protein forms amyloid-like aggregates in vitro // Int. J. Mol. Sci. 2022. V. 23. Art. 11657.
  9. 9. Kosolapova A. O., Belousov M. V., Sulatskaya A. I., Belousova M. V., Sulatsky M. I., Antonets K. S., Volkov K. V., Lykholay A. N., Shtark O. Y., Vasileva E. N., Zhukov V. A., Ivanova A. N., Zykin P. A., Kuznetsova I. M., Turoverov K. K., Tikhonovich I. A., Nizhnikov A. A. Two novel amyloid proteins, RopA and RopB, from the root nodule bacterium Rhizobium leguminosarum // Biomolecules. 2019. V. 9. Art. 694.
  10. 10. Ryzhova T. A., Sopova J. V., Zadorsky S. P., Siniukova V. A., Sergeeva A. V., Galkina S. A., Nizhnikov A. A., Shenfeld A. A., Volkov K. V., Galkin A. P. Screening for amyloid proteins in the yeast proteome // Curr. Genet. 2018. V. 64. P. 469–478.
  11. 11. Sant’Anna R., Fernández M. R., Batlle C., Navarro S., de Groot N. S., Serpell L., Ventura S. Characterization of amyloid cores in prion domains // Sci. Rep. 2016. V. 6. Art. 34274.
  12. 12. Serio T. R., Lindquist S. L. [PSI+]: an epigenetic modulator of translation termination efficiency // Annu. Rev. Cell Dev. Biol. 1999. V. 15. P. 661–703.
  13. 13. Sivanathan V., Hochschild A. Generating extracellular amyloid aggregates using E. coli cells // Genes Dev. 2012. V. 26. P. 2659–2667.
  14. 14. Sivanathan V., Hochschild A. A bacterial export system for generating extracellular amyloid aggregates // Nat. Protoc. 2013. V. 8. P. 1381–1390.
  15. 15. Sopova J. V., Koshel E. I., Belashova T. A., Zadorsky S. P., Sergeeva A. V., Siniukova V. A., Shenfeld A. A., Velizhanina M. E., Volkov K. V., Nizhnikov A. A., Kachkin D. V., Gaginskaya E. R., Galkin A. P. RNA-binding protein FXR1 is presented in rat brain in amyloid form // Sci. Rep. 2019. V. 9. Art. 18983.
  16. 16. Taglialegna A., Matilla-Cuenca L., Dorado-Morales P., Navarro S., Ventura S., Garnett J. A., Lasa I., Valle J. The biofilm-associated surface protein Esp of Enterococcus faecalis forms amyloid-like fibers // NPJ Biofilms Microbiomes. 2020. V. 6. P. 15. https://doi.org/10.1038/s41522-020-0125-2
  17. 17. Vaneyck J., Segers-Nolten I., Broersen K., Claessens M. M.A.E. Cross-seeding of alpha-synuclein aggregation by amyloid fibrils of food proteins // J. Biol. Chem. 2021. V. 296. Art. 100358.
  18. 18. Willbold D., Strodel B., Schröder G. F., Hoyer W., Heise H. Amyloid-type protein aggregation and prion-like properties of amyloids // Chem. Rev. 2021. V. 121. P. 8285–8307.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library