RAS BiologyМикробиология Microbiology

  • ISSN (Print) 0026-3656
  • ISSN (Online) 3034-5464

Genome analysis and reconstruction of metabolic pathways of amino acids and betaine degradation in the haloalkaliphilic bacteria Anoxynatronum sibiricum

PII
10.31857/S0026365624060038-1
DOI
10.31857/S0026365624060038
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 93 / Issue number 6
Pages
702-714
Abstract
The genome of the haloalkaliphilic anaerobic microorganism Anoxynatronum sibiricum Z-7981T isolated earlier from the Nizhneye Beloye soda lake (Republic of Buryatia, Russia) was analyzed. The ability of the organism to use betaine as an electron acceptor in the Stickland reaction was revealed. The introduction of betaine into the medium not only stimulated growth on amino acids used by A. sibiricum individually, but also allowed identifying additional amino acids, growth on which was not possible without the acceptor. Based on the genomic characteristics and experimental growth data, metabolic schemes of amino acid degradation in the presence and absence of betaine were proposed. Schemes for threonine, glutamate and lysine when used together with betaine were compiled for the first time. For all amino acids used, the qualitative and quantitative composition of the metabolic products was determined and the stoichiometric substrate/product ratios were obtained. Balance equations for the identified variants of the Stickland reaction, including those previously not described in the literature, have been compiled.
Keywords
бетаин аминокислоты реакция Стикленда галоалкалофилы содовые озера бетаинредуктазный комплекс
Date of publication
15.11.2024
Year of publication
2024
Number of purchasers
0
Views
35

References

  1. 1. Деткова Е. Н., Болтянская Ю. В., Кевбрин В. В. Деградация глицинбетаина в реакции Стикленда галоалкалофильной бактерией Halonatronomonas betaini , выделенной из содового озера Танатар III // Микробиология. 2022. Т. 91. С. 720–725.
  2. 2. Detkova E. N., Boltyanskaya Y. V., Kevbrin V. V. Glycine betaine degradation via the Stickland reaction by a haloalkaliphilic bacterium Halonatronomonas betaini isolated from the Tanatar III soda lake // Microbiology (Moscow). 2022. V. 91. P. 721–726.
  3. 3. Жилина Т. Н., Заварзин Г. А. Новая экстремально галофильная гомоацетатная бактерия Acetohalobium arabaticum gen. nov., sp. nov. // Доклады АН СССР. 1990. Т. 311. С. 745–747.
  4. 4. Zhilina T. N., Zavarzin G. A. A new extremely halophilic homoacetic bacterium Acetohalobium arabaticum gen. nov., sp. nov. // Dokl. Akad. Nauk USSR. 1990. V. 311. P. 745–747.
  5. 5. Заварзин Г. А., Жилина Т. Н., Кевбрин В. В. Алкалофильное микробное сообщество и его функциональное разнообразие // Микробиология. 1999. Т. 68. С. 579–599.
  6. 6. Zavarzin G. A., Zhilina T. N., Kevbrin V. V. The alkaliphilic microbial community and its functional diversity // Microbiology (Moscow). 1999. V. 68. P. 503–521.
  7. 7. Andreesen J. R. Glycine reductase mechanism // Curr. Opin. Chem. Biol. 2004. V. 8. P. 454–461.
  8. 8. Bezsudnova E.Yu., Boyko K. M., Popov V. O. Properties of bacterial and archaeal branched-chain amino acid aminotransferases // Biochemistry (Moscow). 2017. V. 82. Р. 1572–1591.
  9. 9. Biegel E., Schmidt S., González J. M., Müller V. Biochemistry, evolution and physiological function of the Rnf complex, a novel ion-motive electron transport complex in prokaryotes // Cell. Mol. Life Sci. 2011. V. 68. P. 613–634.
  10. 10. Buckel W. Energy conservation in fermentations of anaerobic bacteria // Front. Microbiol. 2021. V. 12. Art. 703525.
  11. 11. Buckel W. Unusual enzymes involved in five pathways of glutamate fermentation // Appl. Microbiol. Biotechnol. 2001. V. 57. P. 263–273.
  12. 12. Chang A., Jeske L., Ulbrich S., Hofmann J., Koblitz J., Schomburg I., Neumann-Schaal M., Jahn D., Schomburg D. BRENDA, the ELIXIR core data resource in 2021: new developments and updates // Nucleic Acids Res. 2021. V. 49. P. D498–D508.
  13. 13. Cunin R., Glansdorff N., Piérard A., Stalon V. Biosynthesis and metabolism of arginine in bacteria // Microbiol. Rev. 1986. V. 50. P. 314–352.
  14. 14. Fan C., Bobik T. A. The PduX enzyme of Salmonella enterica is an L-threonine kinase used for coenzyme B12 synthesis // J. Biol. Chem. 2008. V. 283. P. 11322–11329.
  15. 15. Fonknechten N., Perret A., Perchat N., Tricot S., Lechaplais C., Vallenet D., Vergne C., Zaparucha A., Le Paslier D., Weissenbach J., Salanoubat M. A conserved gene cluster rules anaerobic oxidative degradation of L-ornithine // J. Bacteriol. 2009. V. 191. P. 3162–3167.
  16. 16. Garnova E. S., Zhilina T. N., Tourova T. P., Lysenko A. M. Anoxynatronum sibiricum gen. nov., sp. nov. alkaliphilic saccharolytic anaerobe from cellulolytic community of Nizhnee Beloe (Transbaikal region) // Extremophiles. 2003. V. 7. P. 213–220.
  17. 17. Grant W. D., Jones B. E. Bacteria, archaea and viruses of soda lakes // Soda lakes of East Africa / Ed. Schagerl M. Springer International Publishing, Switzerland, 2016. P. 97–147.
  18. 18. Heijthuijsen J. H.F.G., Hansen T. A. Anaerobic degradation of betaine by marine Desulfobacterium strains // Arch. Microbiol. 1989. V. 152. P. 393–396.
  19. 19. Hetzel M., Brock M., Selmer T., Pierik A. J., Golding B. T., Buckel W. Acryloyl-CoA reductase from Clostridium propionicum . An enzyme complex of propionyl-CoA dehydrogenase and electron-transferring flavoprotein // Eur. J. Biochem. 2003. V. 270. P. 902–910.
  20. 20. Kreimeyer A., Perret A., Lechaplais C., Vallenet D., Médigue C., Salanoubat M., Weissenbach J. Identification of the last unknown genes in the fermentation pathway of lysine // J. Biol. Chem. 2007. V. 282. P. 7191–7197.
  21. 21. La Cono V., Arcadi E., La Spada G., Barreca D., Laganà G., Bellocco E., Catalfamo M., Smedile F., Messina E., Giuliano L., Yakimov M. M. A three-component microbial consortium from deep-sea salt-saturated anoxic Lake Thetis links anaerobic glycine betaine degradation with methanogenesis // Microorganisms. 2015. V. 3. P. 500–517.
  22. 22. Magoč T., Salzberg S. L. FLASH: fast length adjustment of short reads to improve genome assemblies // Bioinformatics. 2011. V. 27. P. 2957–2963.
  23. 23. Mouné S., Manac’h N., Hirschler A., Caumette P., Willison J. C., Matheron R. Haloanaerobacter salinarius sp. nov., a novel halophilic fermentative bacterium that reduces glycine-betaine to trimethylamine with hydrogen or serine as electron donors; emendation of the genus Haloanaerobacter / / Int. J. Syst. Bacteriol. 1999. V. 49. P. 103–112.
  24. 24. Mullins E. A., Francois J. A., Kappock T. J. A specialized citric acid cycle requiring succinyl-coenzyme A (CoA):acetate CoA-transferase (AarC) confers acetic acid resistance on the acidophile Acetobacter aceti / / J. Bacteriol. 2008. V. 190. P. 4933–4940.
  25. 25. Müller E., Fahlbusch K., Walther R., Gottschalk G. Formation of N,N-dimethylglycine, acetic acid, and butyric acid from betaine by Eubacterium limosum / / Appl. Environ. Microbiol. 1981. V. 42. P. 439–445.
  26. 26. Naumann E., Hippe H., Gottschalk G. Betaine: New oxidant in the Stickland reaction and methanogenesis from betaine and L-alanine by a Clostridium sporogenes‒Methanosarcina barkeri coculture // Appl. Environ. Microbiol. 1983. V. 45. P. 474–483.
  27. 27. Sorokin D. Y., Tourova T. P., Henstra A. M., Stams A. J.M., Galinski E. A., Muyzer G. Sulfidogenesis under extremely haloalkaline conditions by Desulfonatronospira thiodismutans gen. nov., sp. nov., and Desulfonatronospira delicata sp. nov. a novel lineage of Deltaproteobacteria from hypersaline soda lakes // Microbiology (SGM). 2008. V. 154. P. 1444–1453.
  28. 28. Sorokin D. Y. Microbial utilization of glycine betaine in hypersaline soda lakes // Microbiology (Moscow). 2021. V. 90. P. 569–577.
  29. 29. Stickland L. H. Studies in the metabolism of the strict anaerobes (genus Clostridium ): the chemical reactions by which Cl. sporogenes obtains its energy // Biochem. J. 1934. V. 28. Р. 1746–1759.
  30. 30. Tatusova T., DiCuccio M., Badretdin A., Chetvernin V., Nawrocki E. P., Zaslavsky L., Lomsadze A., Pruitt K. D., Borodovsky M., Ostell J. NCBI prokaryotic genome annotation pipeline // Nucleic Acids Res. 2016. V. 44. P. 6614–6624.
  31. 31. Vasilinetc I., Prjibelski A. D., Gurevich A., Korobeynikov A., Pevzner P. A. Assembling short reads from jumping libraries with large insert sizes // Bioinformatics. 2015. V. 31. P. 3262–3268.
  32. 32. Wang H., Gunsalus R. P. Coordinate regulation of the Escherichia coli formate dehydrogenase fdnGHI and fdhF genes in response to nitrate, nitrite, and formate: roles for NarL and NarP // J. Bacteriol. 2003. V. 185. P. 5076–85.
  33. 33. Wang S., Huang H., Kahnt J., Thauer R. K. Clostridium acidurici electron-bifurcating formate dehydrogenase // Appl. Environ. Microbiol. 2013. V. 79. P. 6176–6179.
  34. 34. Zhilina T. N., Zavarzin G. A. Alkaliphilic anaerobic community at pH 10 // Curr. Microbiol. 1994. V. 29. P. 109–112.
  35. 35. Zhilina T. N., Zavarzina D. G., Kolganova T. V., Lysenko A. M., Tourova T. P. Alkaliphilus peptidofermentans sp. nov., a new alkaliphilic bacterial soda lake isolate capable of peptide fermentation and Fe(III) reduction // Microbiology (Moscow). 2009. V. 78. P. 445–454.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library