- PII
- S3034546425020095-1
- DOI
- 10.7868/S3034546425020095
- Publication type
- Status
- Published
- Authors
- Volume/ Edition
- Volume 94 / Issue number 2
- Pages
- 199-202
- Abstract
- Abstract. To study the contribution of the glucose dehydrogenase (gcd) gene product to the development of ISR priming in plants, a strain of Pantoea brenneri 3.2 with a deletion of the gcd gene was obtained. Using the Lambda Red (λ Red) phage recombination system, we obtained a marker-free mutant strain of P. brenneri 3.2 Δgcd. Inactivation of the gcd glucose dehydrogenase gene resulted in a 2.5-fold decrease in the strain’s ability to solubilize tricalcium phosphate on the solid nutrient medium NBRIP.
- Keywords
- ISR-прайминг солюбилизация фосфатов Pantoea brenneri
- Date of publication
- 01.04.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 62
References
- 1. Бульмакова Д. С., Шагиева Г. И., Иткина Д. Л., Ленина О. А., Шарипова М. Р., Сулейманова А. Д. Антагонистические штаммы Pantoea brenneri как средства защиты растений // Микология и фитопатология. 2023. Т. 57. C. 352–361.
- 2. Иткина Д. Л., Сулейманова А. Д., Шарипова М. Р. Pantoea brenneri AS3 и Bacillus ginsengihumi M2.11 как потенциальные агенты биоконтроля и стимуляторы роста растений // Микробиология. 2021. Т. 90. С. 204–214.
- 3. Itkina D. L., Suleimanova A. D., Sharipova M. R. Pantoea brenneri AS3 and Bacillus ginsengihumi M2.11 as potential biocontrol and plant growth-promoting agents // Microbiology (Moscow). 2021. V. 90. P. 210–218.
- 4. Datsenko K. A., Wanner K. A. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products // Proc. Natl. Acad. Sci. USA. 2000. V. 97. P. 6640–6645.
- 5. Hanahan D. Studies on transformation of Escherichia coli with plasmids // J. Mol. Biol. 1983. V. 166. P. 557–580.
- 6. Kumar A., Verma J. Does plant-microbe interaction confer stress tolerance in plants: a review // Microbiol. Res. 2018. V. 207. P. 41–52.
- 7. Park J. H., Bolana N., Megharaj M., Naidua R. Isolation of phosphate solubilizing bacteria and their potential for lead immobilization in soil // J. Hazard. Mater. 2011. V. 185. P. 829–836.
- 8. Paul D., Sinha S. N. Isolation and characterization of phosphate solubilizing bacterium Pseudomonas aeruginosa KUPSB12 with antibacterial potential from river Ganga, India // Ann. Agrar. Sci. 2017. V. 15. P. 130–136.
- 9. Rawat P., Das S., Shankhdhar D., Shankhdhar S. C. Phosphate-solubilizing microorganisms: mechanism and their role in phosphate solubilization and uptake // J. Soil Sci. Plant Nutr. 2020. V. 21. P. 49–68.
- 10. Sambrook J., Fritsch E. F., Maniatis T. Molecular cloning: a laboratory manual. 2nd ed. NY: Cold Spring Harbor Laboratory Press, 1989.
- 11. Suleimanova A. D., Beinhauer A., Valeeva L. R., Chastukhina I. B., Balaban N. P., Shakirov E. V., Greiner R., Sharipova M. R. Novel glucose-1-phosphatase with high phytase activity and unusual metal ion activation from soil bacterium Pantoea sp. strain 3.5.1 // Appl. Environ. Microbiol. 2015. V. 81. P. 6790–6799.
- 12. Suleimanova A., Bulmakova D., Sokolnikova L., Egorova E., Itkina D., Kuzminova O., Gizatullina A., Sharipova M. Phosphate solubilization and plant growth promotion by Pantoea brenneri soil isolates // Microorganisms. 2023. V. 11. Art. 1136. https://doi.org/10.3390/microorganisms11051136