ОБНМикробиология Microbiology

  • ISSN (Print) 0026-3656
  • ISSN (Online) 3034-5464

БИОПЛЕНКИ КАК ПРЕДПОЛАГАЕМАЯ БАЗОВАЯ ФОРМА СУЩЕСТВОВАНИЯ МИКРООРГАНИЗМОВ: СОВРЕМЕННЫЕ ПРЕДСТАВЛЕНИЯ

Код статьи
S3034546425040014-1
DOI
10.7868/S3034546425040014
Тип публикации
Обзор
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 94 / Номер выпуска 4
Страницы
303-329
Аннотация
В обзоре анализируются современные сведения о процессах формирования микробных биопленок, как закрепленных на биотических и абиотических поверхностях, так и возникающих в результате автоагрегации и коагрегации в толще жидкости. Подробно описаны физико-химические явления, протекающие при распознавании клетками микроорганизмов поверхности раздела фаз. Детально описаны компоненты внеклеточного полимерного матрикса биопленок, регуляция их образования, структурное значение для архитектуры биопленок и защитная роль при воздействии биоцидов (в том числе антибиотиков) и прочих неблагоприятных факторов внешней среды. Рассмотрены подходы к управлению формированием микробных биопленок. Подвергнута анализу предложенная в литературе новая схема формирования микробных биопленок, включающая три этапа вместо пяти.
Ключевые слова
биопленки регуляторные системы чувство кворума (quorum sensing) циклические динуклеотиды внеклеточный полимерный матрикс антибиопленочные агенты стимуляция формирования биопленок
Дата публикации
01.08.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
91

Библиография

  1. 1. Журина М. В., Кострикина Н. А., Паршина Е. А., Стрелкова Е. А., Юсипович А. И., Максимов Г. В., Плакунов В. К. Визуализация внеклеточного полимерного матрикcа биопленок Chromobacterium violaceum с помощью микроскопических методов // Микробиология. 2013. T. 82. C. 502-509. https://doi.org/10.7868/s0026365613040162 @@ Zhurina M. V., Kostrikina N. A., Parshina E. Yu., Strelkova E. A., Yusipovich A. I., Maksimov G. V., Plakunov V. K. Visualization of the extracellular polymeric matrix of Chromobacterium violaceum biofilms by microscopic methods // Microbiology (Moscow). 2013. V. 82. P. 517-524.https://doi.org/10.1134/S0026261713040164
  2. 2. Журина М. В., Ганнесен А. В., Мартьянов С. В., Тетенева Н. А., Штратников В. Ю., Плакунов В. К. Никлозамид как перспективный антибиопленочный агент // Микробиология. 2017. Т. 86. С. 439-447. https://doi.org/10.7868/S0026365617040152 @@ Zhurina M. V., Gannesen A. V., Mart’yanov S.V., Teteneva N. A., Shtratnikov V. Yu., Plakunov V. K. Niclosamide as a promising antibiofilm agent // Microbiology (Moscow). 2017. V. 86. P. 455-462. https://doi.org/10.1134/S0026261717040154
  3. 3. Журина М. В., Николаев Ю. А., Плакунов В. К. Роль внеклеточного полимерного матрикса в защитном эффекте при действии антибиотика азитромицина на Chromobacterium violaceum // Микробиология. 2019. Т. 88. С. 497-500. https://doi.org/10.1134/S0026365619040153 @@ Zhurina M. V., Nikolaev Yu.A., Plakunov V. K. Role of the extracellular polymer matrix in azithromycin protection of Chromobacterium violaceum biofilms // Microbiology (Moscow). 2019. V. 88. P. 275-281.https://doi.org/10.1134/S0026261719040155
  4. 4. Журина М. В., Каллистова А. Ю., Панюшкина А. Е., Ганнесен А. В., Мартьянов С. В., Герасин В. А., Сивов Н. А., Тихомиров В. А., Плакунов В. К. Специфика формирования мультивидовых микробных биопленок на поверхности полиэтилена // Микробиология. 2020. Т. 89. С. 400-409.https://doi.org/10.31857/S0026365620040187 @@ Zhurina M. V., Kallistova A. Yu., Panyushkina A. E., Gannesen A. V., Mart’yanov S.V., Gerasin V. A., Sivov N. A., Tikhomirov V. A., Plakunov V. K. Specific features of formation of multispecies microbial biofilms on polyethylene surface // Microbiology (Moscow). 2020. V. 89. P. 396-404. https://doi.org/10.1134/S0026261720040165
  5. 5. Журина М. В., Богданов К. И., Ганнесен А. В., Мартьянов С. В., Плакунов В. К. Микропластики - новая экологическая ниша в пластисфере для мультивидовых микробных биопленок // Микробиология. 2022. Т. 91. С. 131-149. https://doi.org/10.31857/S0026365622020148 @@ Zhurina M. V., Bogdanov K. I., Gannesen A. V., Mart’yanov S.V., Plakunov V. K. Microplastics as a new ecological niche for multispecies microbial biofilms within the plastisphere // Microbiology (Moscow). 2022. V. 91. P. 107-123. https://doi.org/10.1134/S0026261722020126
  6. 6. Мартьянов С. В., Летаров А. В., Иванов П. А., Плакунов В. К. Стимуляция биосинтеза виолацеина в биопленках Chromobacterium violaceum под воздействием диметилсульфоксида // Микробиология. 2018. Т. 87. С. 325-329. https://doi.org/10.7868/S0026365618030102 @@ Mart’yanov S. V., Letarov A. V., Ivanov P. A., Plakunov V. K. Stimulation of violacein biosynthesis in Chromobacterium violaceum biofilms in the presence of dimethyl sulfoxide // Microbiology (Moscow). 2018. V. 87. P. 437-440. https://doi.org/10.1134/S0026261718030050
  7. 7. Ножевникова А. Н., Бочкова Е. А., Плакунов В. К. Мультивидовые биопленки в экологии, медицине и биотехнологии // Микробиология. 2015. Т. 84. С. 623-644. https://doi.org/10.7868/S0026365615060117 @@ Nozhevnikova A. N., Botchkova E. A., Plakunov V. K. Multispecies biofilms in ecology, medicine, and biotechnology // Microbiology (Moscow). 2015. V. 84. P. 731-750. https://doi.org/10.1134/S0026261715060107
  8. 8. Пиневич А. В., Коженкова Е. В., Аверина С. Г. Биопленки и другие прокариотные консорциумы. СПб.: Химиздат, 2018. 263 с.
  9. 9. Плакунов В. К., Мартьянов С. В., Тетенева Н. А., Журина М. В. Управление формированием микробных биопленок: анти- и пробиопленочные агенты (обзор) // Микробиология. 2017. Т. 86. С. 402-420. https://doi.org/10.7868/S0026365617040127 @@ Plakunov V. K., Mart’yanov S.V., Teteneva N. A., Zhurina M. V. Controlling of microbial biofilms formation: anti- and probiofilm agents, review // Microbiology (Moscow). 2017. V. 86. P. 423-438. https://doi.org/10.1134/ S0026261717040129
  10. 10. Плакунов В. К., Журина М. В., Ганнесен А. В., Мартьянов С. В., Николаев Ю. А. Антибиопленочные агенты: неоднозначность терминологии и стратегия поиска // Микробиология. 2019а. Т. 88. С. 705-709. https://doi.org/10.1134/S0026365619060144 @@ Plakunov V. K., Zhurina M. V., Gannesen A. V., Mart’yanov S.V., Nikolaev Yu. A. Antibiofilm agents: therminological ambiguity and strategy for search // Microbiology (Moscow). 2019a. V. 88. P. 747-750. https://doi.org/10.1134/S0026261719060146
  11. 11. Плакунов В. К., Николаев Ю. А., Ганнесен А. В., Чемаева Д. С., Журина М. В. Новый подход к выявлению защитной роли Esсherichia coli в отношении грамположительных бактерий при действии антибиотиков на бинарные биопленки // Микробиология. 2019б. Т. 88. С. 288-296. https://doi.org/10.1134/S0026365619030091 @@ Plakunov V. K., Nikolaev Yu.A., Gannesen A. V., Chemaeva D. S., Zhurina M. V. A new approach to detection of the protective effect of Escherichia coli on Gram-positive bacteria in binary biofilms in the presence of antibiotics // Microbiology (Moscow). 2019b. V. 88. P. 275-281. https://doi.org/10.1134/S0026261719030093
  12. 12. Плакунов В. К., Ганнесен А. В., Мартьянов С. В., Журина М. В. Биокоррозия синтетических пластмасс: механизмы деградации и способы защиты // Микробиология. 2020. Т. 89. С. 631-645. https://doi.org/10.31857/S0026365620060142 @@ Plakunov V. K., Gannesen A. V., Mart’yanov S.V., Zhurina M. V. Biocorrosion of synthetic plastics: degradation mechanisms and methods of protection // Microbiology (Moscow). 2020. V. 89. P. 647-659. https://doi.org/10.1134/S0026261720060144
  13. 13. Стрелкова Е. А., Позднякова Н. В., Журина М. В., Плакунов В. К., Беляев С. С. Роль внеклеточного полимерного матрикса в устойчивости бактериальных биопленок к экстремальным факторам среды // Микробиология. 2013. Т. 82. С. 131-138. https://doi.org/10.7868/S0026365613020158 @@ Strelkova E. A., Pozdnyakova N. V., Zhurina M. V., Plakunov V. K., Belyaev S. S. Role of the extracellular polymer matrix in resistance of bacterial biofilms to extreme environmental factors // Microbiology (Moscow). 2013. V. 82. P. 119-125. https://doi.org/10.1134/S0026261712020142
  14. 14. Abdelkader J., Alelyani M., Alashban Y., Alghamdi S. A., Bakkour Y. Modification of dispersin B with cyclodextrin-ciprofloxacin derivatives for treating staphylococcal // Molecules. 2023. V. 28. Art. 5311. https://doi.org/10.3390/molecules28145311
  15. 15. Abreu-Pereira C.A., Klein M. I., Lobo C. I.V., Gorayb Pereira A. L., Jordão C. C., Pavarina A. C. DNase enhances photodynamic therapy against fluconazole-resistant Candida albicans biofilms // Oral Dis. 2023. V. 29. P. 1855-1867. https://doi.org/10.1111/odi.14149
  16. 16. Aherne O., Mørch M., Ortiz R., Shannon O., Davies J. R. A novel multiplex fluorescent-labeling method for the visualization of mixed-species biofilms in vitro // Microbiol. Spectr. 2024. V. 12. Art. e0025324. https://doi.org/10.1128/spectrum.00253-24
  17. 17. Al-Otaibi N.S., Bergeron J. R.C. Structure and assembly of the bacterial flagellum // Subcell. Biochem. 2022. V. 99. P. 395-420. https://doi.org/10.1007/978-3-031-00793-4_13
  18. 18. Alshatwi A. A., Subash-Babu P., Antonisamy P. Violacein induces apoptosis in human breast cancer cells through up regulation of BAX, p53 and down regulation of MDM2 // Exp. Toxicol. Pathol. 2016. V. 68. P. 89-97. https://doi.org/10.1016/j.etp.2015.10.002
  19. 19. Anantharaman S., Guercio D., Mendoza A. G., Withorn J. M., Boon E. M. Negative regulation of biofilm formation by nitric oxide sensing proteins // Biochem. Soc. Trans. 2023. V. 51. P. 1447-1458. https://doi.org/10.1042/BST20220845
  20. 20. Angelin J. Kavitha M. Exopolysaccharides from probiotic bacteria and their health potential // Int. J. Biol. Macromol. 2020. V. 162. P. 853-865. https://doi.org/10.1016/j.ijbiomac.2020.06.190
  21. 21. Armbruster C. R., Lee C. K., Parker-Gilham J., de Anda J., Xia A., Zhao K., Murakami K., Tseng B. S., Hoffman L. R., Jin F., Harwood C. S., Wong G. C., Parsek M. R. Heterogeneity in surface sensing suggests a division of labor in Pseudomonas aeruginosa populations // eLife. 2019. V. 8. Art. e45084. https://doi.org/10.7554/eLife.45084
  22. 22. Armitage J. P., Berry R. M. Assembly and dynamics of the bacterial flagellum // 2020. V. 74. P. 181-200. https://doi.org/10.1146 /annurev-micro-090816-093411
  23. 23. Arnaouteli S., Bamford N. C., Stanley-Wall N.R., Kovács Á. T. Bacillus subtilis biofilm formation and social interactions // Nat. Rev. Microbiol. 2021. V. 19. P. 600-614. https://doi.org/10.1038/s41579-021-00540-9
  24. 24. Avbelj M., Zupan J., Raspor P. Quorum-sensing in yeast and its potential in wine making // Appl. Microbiol. Biotechnol. 2016. V. 100. P. 7841-7852. https://doi.org/10.1007/s00253-016-7758-3
  25. 25. Balducci E., Papi F., Capialbi D. E., Del Bino L. Polysaccharides’ structures and functions in biofilm architecture of antimicrobial-resistant (AMR) pathogens // Int. J. Mol. Sci. 2023. V. 24. Art. 4030. https://doi.org/10.3390/ijms24044030
  26. 26. Baltz R. H. Antibiotic discovery from actinomycetes: will a renaissance follow the decline and fall? // SIM News. 2005. V. 55. P. 186-196. https://www.researchgate.net/publication/284626065
  27. 27. Batoni G., Maisetta G., Esin S. Antimicrobial peptides and their interaction with biofilms of medically relevant bacteria // Biochim. Biophys. Acta. 2016. V. 1858. P. 1044-1060. https://doi.org/10.1016/j.bbamem.2015.10.013
  28. 28. Bernardi S., Anderson A., Macchiarelli G., Hellwig E., Cieplik F., Vach K., Al-Ahmad A. Subinhibitory antibiotic concentrations enhance biofilm formation of clinical Enterococcus faecalis isolates // Antibiotics (Basel). 2021. V. 10. Art. 874. https://doi.org/10.3390/antibiotics10070874
  29. 29. Berne C., Ellison C. K., Ducret A., Brun Y. V. Bacterial adhesion at the single-cell level // Nature Rev. Microbiol. 2018a. V. 16. P. 616-627. https://doi.org/10.1038/s41579-018-0057-5
  30. 30. Berne C., Ellison C. K., Agarwal R., Severin G. B., Fiebig A., Morton R. I., Waters C. M., Brun Y. V. Feedback regulation of Caulobacter crescentus holdfast synthesis by flagellum assembly via the holdfast inhibitor HfiA // Mol. Microbiol. 2018b. V. 110. P. 219-238. https://doi.org/10.1111/mmi.14099
  31. 31. Besharova O., Suchanek V. M., Hartmann R., Drescher K., Sourjik V. Diversification of gene expression during formation of static submerged biofilms by Escherichia coli // Front. Microbiol. 2016. V. 7. Art 1568. https://doi.org/10.3389/fmicb.2016.01568
  32. 32. Bhattacharya S. P., Karmakar S., Acharya K., Bhattacharya A. Quorum sensing inhibition and antibiofilm action of triterpenoids: an updated insight // Fitoterapia. 2023. V. 167. Art. 105508. https://doi.org/10.1016/j.fitote.2023.105508
  33. 33. Bilsland E., Tavella T. A., Krogh R., Stokes J. E., Roberts A., Ajioka J., Spring D. R., Andricopulo A. D., Costa F. T.M., Oliver S. G. Antiplasmodial and trypanocidal activity of violacein and deoxyviolacein produced from synthetic operons // BMC Biotechnol. 2018. V. 18. Art. 22. https://doi.org/10.1186/s12896-018-0428-z
  34. 34. Bjarnsholt T., Alhede M., Alhede M., Eickhardt-Sørensen S.R., Moser C., Kühl M., Jensen P. O., Høiby N. The in vivo biofilm // Trend. Microbiol. 2013. V. 21. P. 466-474. https://doi.org/10.1016/j.tim.2013.06.002
  35. 35. Boinovich L. B., Kaminsky V. V., Domantovsky A. G., Emelyanenko K. A., Aleshkin A. V., Zulkarneev E. R., Kiseleva I. A., Emelyanenko A. M. Bactericidal activity of superhydrophobic and superhydrophilic copper in bacterial dispersions // Langmuir. 2019. V. 35. P. 2832-2841. https://doi.org/10.1021/acs.langmuir.8b03817
  36. 36. Boldrin F., Provvedi R., Cioetto Mazzabò L., Segafreddo G., Manganelli R. Tolerance and persistence to drugs: a main challenge in the fight against Mycobacterium tuberculosis // Front. Microbiol. 2020. V. 11. Art. 1924. https://doi.org/10.3389/fmicb.2020.01924
  37. 37. Bottagisio M., Soggiu A., Piras C., Bidossi A., Greco V., Pieroni L., Bonizzi L., Roncada P., Lovati A. B. Proteomic analysis reveals a biofilm-like behavior of planktonic aggregates of Staphylococcus epidermidis grown under environmental pressure/stress // Front. Microbiol. 2019. V. 10. Art. 1909. https://doi.org/10.3389/fmicb.2019.01909
  38. 38. Boyd C. D., O’Toole G. A. Second messenger regulation of biofilm formation: breakthroughs in understanding c-di-GMP effector systems // Ann. Rev. Cell Develop. Biol. 2012. V. 28. P. 439-462. https://doi.org/10.1146/annurev-cellbio-101011-155705
  39. 39. Brameyer S., Heermann R. Specificity of signal-binding via non-AHL LuxR-type receptors // PLoS One. 2015. V. 10. Art. e0124093. https://doi.org/10.1371/journal.pone.0124093
  40. 40. Brown S., Santa Maria J. P. Jr., Walker S. Wall teichoic acids of gram-positive bacteria // Annu. Rev. Microbiol. 2013. V. 67. P. 313-336. https://doi.org/10.1146/annurev-micro-092412-155620
  41. 41. Braun F., Thomalla L., van der Does C., Quax T. E.F., Allers T., Kaever V., Albers S. V. Cyclic nucleotides in archaea: cyclic di-AMP in the archaeon Haloferax volcanii and its putative role // Microbiology Open. 2019. V. 8. Art. e00829. https://doi.org/10.1002/mbo3.829
  42. 42. Cai Y.-M. Non-surface attached bacterial aggregates: a ubiquitous third lifestyle // Front. Microbiol. 2020. V. 11. Art. 557035. https://doi.org/10.3389/fmicb.2020.557035
  43. 43. Campoccia D., Montanaro L., Arciola C. R. Extracellular DNA (eDNA). A major ubiquitous element of the bacterial biofilm architecture // Int. J. Mol. Sci. 2021. V. 22. Art. 9100. https://doi.org/10.3390/ijms22169100
  44. 44. Cancino-Diaz M.E., Guerrero-Barajas C., Betanzos-Cabrera G., Cancino-Diaz J. C. Nucleotides as bacterial second messengers // Molecules. 2023. V. 28. Art. 7996. https://doi.org/10.3390/molecules28247996
  45. 45. Casadidio C., Mayol L., Biondi M., Scuri S., Cortese M., Hennink WE., Vermonden T., De Rosa G., Di Martino P., Censi R. Anionic polysaccharides for stabilization and sustained release of antimicrobial peptides // Int. J. Pharm. 2023. V. 636. Art. 122798. https://doi.org/10.1016/j.ijpharm.2023.122798
  46. 46. Charani E., Holmes A. Antibiotic stewardship-twenty years in the making // Antibiotics (Basel). 2019. V. 8. Art. 7. https://doi.org/10.3390/antibiotics8010007
  47. 47. Chen H., Fujita M., Feng Q., Clardy J., Fink G. R. Tyrosol is a quorum-sensing molecule in Candida albicans // Proc. Natl. Acad. Sci. USA. 2004. V. 101. P. 5048-5052. https://doi.org/10.1073/pnas.0401416101
  48. 48. Cho E., Hwang J. Y., Park J. S., Oh D., Oh D. C., Park H. G., Shin J., Oh K. B. Inhibition of Streptococcus mutans adhesion and biofilm formation with small-molecule inhibitors of sortase A from Juniperus chinensis // J. Oral. Microbiol. 2022. V. 14. Art. 2088937. https://doi.org/10.1080/20002297.2022.2088937
  49. 49. Choi H. M., Calvert C. R., Husain N., Huss D., Barsi J. C., Deverman B. E., Hunter R. C., Kato M., Lee S. M., Abelin A. C., Rosenthal A. Z., Akbari O. S., Li Y., Hay B. A., Sternberg P. W., Patterson P. H., Davidson E. H., Mazmanian S. K., Prober D. A., van de Rijn M., Leadbetter J. R., Newman D. K., Readhead C., Bronner M. E., Wold B., Lansford R., Sauka-Spengler T., Fraser S. E., Pierce N. A. Mapping a multiplexed zoo of mRNA expression // Development. 2016. V. 143. P. 3632-3637. https://doi.org/10.1242/dev.140137
  50. 50. Chou S.-H., Guiliani N., Lee V. T., Römling U. (Eds.). Microbial cyclic di-nucleotide signaling. Springer Nature Switzerland AG. 2020. https://doi.org/10.1007/978-3-030-33308-9
  51. 51. Cordero O. X., Datta M. S. Microbial interactions and community assembly at microscales // Curr. Opin. Microbiol. 2016. V. 31. P. 227-234. https://doi.org/10.1016/j.mib.2016.03.015
  52. 52. Corno G., Coci M., Giardina M., Plechuk S., Campanile F., Stefani S. Antibiotics promote aggregation within aquatic bacterial communities // Front. Microbiol. 2014. V. 5. Art. 297. https://doi.org/10.3389/fmicb.2014.00297
  53. 53. Corrigan R. M., Gründling A. Cyclic di-AMP: another second messenger enters the fray // Nature Revs. Microbiol. 2013. V. 11. P. 513-524. https://doi.org/10.1038/nrmicro3069
  54. 54. Costerton J. W., Geesey G. G., Cheng K.-J. How bacteria stick // Scientific American. 1978. V. 238. P. 86-95. https://doi.org/10.1038/scientificamerican0178-86
  55. 55. Costerton J. W. Overview of microbial biofilms // J. Ind. Microbiol. 1995. V. 15. P. 137-140. https://doi.org/10.1007/bf01569816
  56. 56. Costerton J. W., Philip S. Stewart P. S., Greenberg E. P. Bacterial Biofilms: A common cause of persistent infections // Science. 1999. V. 284. P. 1318-1322. https://doi.org/10.1126/science.284.5418.1318
  57. 57. Cramton S. E., Gerke C., Schnell N. F., Nichols W. W., Götz F. The intercellular adhesion (ica) locus is present in Staphylococcus aureus and is required for biofilm formation // Infect. Immun. 1999. V. 67. P. 5427-5433. https://doi.org/10.1128/iai.67.10.5427-5433.1999
  58. 58. Demkina E. V., Ilicheva E. A., El-Registan G.I., Pankratov T. A., Yushina Y. K., Semenova A. A., Nikolaev Y. A. New approach to improving the efficiency of disinfectants against biofilms // Coatings. 2023. V. 13. Art. 582. https://doi.org/10.3390/coatings13030582
  59. 59. Deter H. S., Hossain T., Butzin N. C. Antibiotic tolerance is associated with a broad and complex transcriptional response in E. coli // Sci. Rep. 2021. V. 11. Art. 6112. https://doi.org/10.1038/s41598-021-85509-7
  60. 60. Dižová S., Bujdáková H. Properties and role of the quorum sensing molecule farnesol in relation to the yeast Candida albicans // Pharmazie. 2017. V. 72. P. 307-312. https://doi.org/10.1691/ph.2017.6174
  61. 61. Dogsa I., Brloznik M., Stopar D., Mandic-Mulec I. Exopolymer diversity and the role of levan in Bacillus subtilis biofilms // PLoS One. 2013. V. 8. Art. e62044. https://doi.org/10.1371/journal.pone.0062044
  62. 62. Dogsa I., Kostanjšek R., Stopar D. eDNA provides a scaffold for autoaggregation of B. subtilis in bacterioplankton suspension // Microorganisms. 2023. V. 11. P. 332. https://doi.org/10.3390/microorganisms11020332
  63. 63. Donlan R. M. Biofilms: microbial life on surfaces // Emerg. Infect. Dis. 2002. V. 8. P. 881-890. https://doi.org/10.3201/eid0809.020063
  64. 64. Eboigbodin K. E., Newton J. R.A., Routh A. F., Biggs C. A. Role of nonadsorbing polymers in bacterial aggregation // Langmuir. 2005. V. 21. P. 12315-12319. https://doi.org/10.1021/la051740u
  65. 65. Emelyanenko A. M., Pytskii I. S., Kaminsky V. V., Chulkova E. V., Domantovsky A. G., Emelyanenko K. A., Sobolev V. D., Aleshkin A. V., Boinovich L. B. Superhydrophobic copper in biological liquids: Antibacterial activity and microbiologically induced or inhibited corrosion // Colloids Surf. B Biointerfaces. 2020. V. 185. Art. 110622. https://doi.org/10.1016/j.colsurfb.2019.110622
  66. 66. Encinas N., Yang C.-Y., Geyer F., Kaltbeitzel A., Baumli P., Reinholz J., Mailänder V., Butt H. J., Vollmer D. Submicrometer-sized roughness suppresses bacteria adhesion // ACS Appl. Mater. Interfaces. 2020. V. 12. P. 21192-21200. https://doi.org/10.1021/acsami.9b22621
  67. 67. Epler Barbercheck C. R., Bullitt E., Andersson M. Bacterial adhesion pili // Subcell. Biochem. 2018. V. 87. P. 1-18. https://doi.org/10.1007/978-981-10-7757-9_1
  68. 68. Fischer J. T., Hossain S., Boon E. M. NosP modulates cyclicdi-GMP signaling in Legionella pneumophila // Biochemistry. 2019. V. 58. P. 4325-4334. https://doi.org/10.1021/acs.biochem.9b00618
  69. 69. Flores-Valdez M.A., Peterson E. R., Aceves-Sánchez M.J., Baliga N. S., Morita Y. S., Sparks I. L., Saini D. K., Yadav R., Lang R., Mata-Espinosa D., León-Contreras J.C., Hernández-Pando R. Comparison of the transcriptome, lipidome, and c-di-GMP production between CGdeltaBCG1419c and BCG, with Mincle- and Myd88-dependent induction of proinflammatory cytokines in murine macrophages // Sci. Rep. 2024. V. 14. Art. 11898. https://doi.org/10.1038/s41598-024-61815-8
  70. 70. Fong J. N.C., Yildiz F. H. Biofilm matrix proteins // Microbiol. Spectr. 2015. V. 3. Art. 10.1128/microbiolspec.MB-0004-2014. https://doi.org/10.1128/microbiolspec.MB-0004-2014
  71. 71. Gannesen A. V., Zdorovenko E. L., Botchkova E. A., Hardouin J., Massier S., Kopitsyn D. S., Gorbachevskii M. V., Kadykova A. A., Shashkov A. S., Zhurina M. V., Netrusov A. I., Knirel Y. A., Plakunov V. K., Feuilloley M. G.J. Composition of the biofilm matrix of Cutibacterium acnes acneic strain RT5 // Front. Microbiol. 2019. V. 10 Art. 1284. https://doi.org/10.3389/fmicb.2019.01284
  72. 72. Gannesen A. V., Ziganshin R. H., Zdorovenko E. L., Klimko A. I., Ianutsevich E. A., Danilova O. A., Tereshina V. M., Gorbachevskii M. V., Ovcharova M. A., Nevolina E. D., Martyanov S. V., Shashkov A. S., Dmitrenok A. S., Novikov A. A., Zhurina M. V., Botchkova E. A., Toukach P. V., Plakunov V. K. Epinephrine extensively changes the biofilm matrix composition in Micrococcus luteus C01 isolated from human skin // Front. Microbiol. 2022. V. 13. Art. 1003942. https://doi.org/10.3389/fmicb.2022.1003942
  73. 73. Gannesen A. V., Schelkunov M. I., Ziganshin R. H., Ovcharova M. A., Sukhacheva M. V., Makarova N. E., Mart’yanov S.V., Loginova N. A., Mosolova A. M., Diuvenji E. V., Nevolina E. D., Plakunov.V.K. Proteomic and transcriptomic analyses of Cutibacterium acnes biofilms and planktonic cultures in presence of epinephrine // AIMS Microbiol. 2024. V. 10. P. 363-390. https://doi.org/ 10.3934/microbiol.2024019
  74. 74. Gautam S., Mahapa A., Yeramala L, Gandhi A., Krishnan S, Kutti R. V., Chatterji D. Regulatory mechanisms of c-di-AMP synthase from Mycobacterium smegmatis revealed by a structure: function analysis // Protein Sci. 2023. V. 32. Art. e4568. https://doi.org/10.1002/pro.4568
  75. 75. Gerardi D., Bernardi S., Bruni A., Falisi G., Botticelli G. Characterization and morphological methods for oral biofilm visualization: where are we nowadays? // AIMS Microbiol. 2024. V. 10. P. 391-414. https://doi.org/10.3934/microbiol.2024020
  76. 76. Gillings M. R. Evolutionary consequences of antibiotic use for the resistome, mobilome, and microbial pangenome // Front. Microbiol. 2013. V. 4. Art. 4. https://doi.org/10.3389/fmicb.2013.00004
  77. 77. Grandclement C., Tannieres M., Morera S., Dessaux Y., Faure D. D. Quorum quenching: role in nature and applied developments // FEMS Microbiol. Revs. 2016. V. 40 P. 86-116. https://doi.org/10.1093 /femsre/fuv038
  78. 78. Grooters K. E., Ku J. C., Richter D. M., Krinock M. J., Minor A., Li P., Kim A., Sawyer R., Li Y. Strategies for combating antibiotic resistance in bacterial biofilms // Front. Cell. Infect. Microbiol. 2024. V. 14. Art. 1352273. https://doi.org/10.3389/fcimb.2024.1352273
  79. 79. Gusnaniar N., van der Mei H. C., Qu W., Nuryastuti T., Hooymans J. M.M., Sjollema J., Busscher H. J. Physicochemistry of bacterial transmission versus adhesion // Adv. Colloid Interface Sci. 2017. V. 250. P. 15-24. https://doi.org/10.1016/j.cis.2017.11.002
  80. 80. Guyet A., Alofi A., Daniel R. A. Insights into the roles of lipoteichoic acids and MprF in Bacillus subtilis // mBio. 2023. V. 14. Art. e0266722. https://doi.org/10.1128/mbio.02667-22
  81. 81. Haaber J., Cohn M. T., Frees D., Andersen T. J., Ingmer H. Planktonic aggregates of Staphylococcus aureus protect against common antibiotics // PLoS One. 2012. V. 7. Art. e41075. https://doi.org/10.1371/journal.pone.0041075
  82. 82. Haist J., Neumann S. A., Al-Bassam M.M., Lindenberg S., Elliot M. A., Tschowri N. Specialized and shared functions of diguanylate cyclases and phosphodiesterases in Streptomyces development // Mol. Microbiol. 2020. V. 114. P. 808-822. https://doi.org/10.1111/mmi.14581
  83. 83. Hajiagha M. N., Kafil H. S. Efflux pumps and microbial biofilm formation // Infect. Genet. Evol. 2023. V. 112. Art. 105459. https://doi.org/10.1016/j.meegid.2023.105459
  84. 84. Hall B. G., Barlow M. Evolution of the serine β-lactamases: past, present and future // Drug Resist. Updat. 2004. V. 7. P. 111-123. https://doi.org/10.1016/j.drup.2004.02.003
  85. 85. Hamilton H. L., Domínguez N. M., Schwartz K. J., Hackett K. T., Dillard J. P. Neisseria gonorrhoeae secretes chromosomal DNA via a novel type IV secretion system // Mol. Microbiol. 2005. V. 55. P. 1704-1721. https://doi.org/10.1111/j.1365-2958.2005.04521
  86. 86. Hershey D. M., Fiebig A., Crosson S. Flagellar perturbations activate adhesion through two distinct pathways in Caulobacter crescentus // mBio. 2021. V. 12. Art. e03266-20. https://doi.org/10.1128/mBio.03266-20
  87. 87. Herzberg C., Meißner J., Warneke R., Stülke J. The many roles of cyclic di-AMP to control the physiology of Bacillus subtilis // microLife. 2023. V. 4. Art. uqad043. https://doi.org/10.1093/femsml/uqad043
  88. 88. Hong Y., Brown D. G. Alteration of bacterial surface electrostatic potential and pH upon adhesion to a solid surface and impacts to cellular bioenergetics // Biotechnol. Bioeng. 2010. V. 105. P. 965-972. https://doi.org/10.1002/bit.22606
  89. 89. Hossain T., Deter H. S., Peters E. J., Butzin N. C. Antibiotic tolerance, persistence, and resistance of the evolved minimal cell, Mycoplasma mycoides JCVI-Syn3B // Science. 2021. V. 24. Art. 102391. https://doi.org/10.1016/j.isci.2021.102391
  90. 90. Hug I., Deshpande S., Sprecher K. S. Pfohl T., Jenal U. Second messenger-mediated tactile response by a bacterial rotary motor // Science. 2017. V. 358. P. 531-534. https://doi.org/10.1126/science.aan5353
  91. 91. Huang L., Wu C., Gao H., Xu C., Dai M., Huang L., Hao H., Wang X., Cheng G. Bacterial multidrug efflux pumps at the frontline of antimicrobial resistance: An overview // Antibiotics (Basel). 2022. V. 11. Art. 520. https://doi.org/10.3390/antibiotics11040520
  92. 92. Ibáñez de Aldecoa A. L., Zafra O., González-Pastor J. E. Mechanisms and regulation of extracellular DNA release and its biological roles in microbial communities // Front. Microbiol. 2017. V. 8. Art. 1390. https://doi.org/10.3389/fmicb.2017.01390
  93. 93. Jakubovics N. S., Goodman S. D., Mashburn-Warren L., Stafford G. P., Cieplik F. The dental plaque biofilm matrix // Periodontol. 2000. 2021. V. 86. P. 32-56. https://doi.org/10.1111/prd.12361
  94. 94. Jeong G. J., Khan F., Tabassum N., Kim Y. M. Natural and synthetic molecules with potential to enhance biofilm formation and virulence properties in Pseudomonas aeruginosa // Crit. Rev. Microbiol. 2023. V. 15. P. 1-29. https://doi.org/10.1080/1040841X.2023.2282459
  95. 95. Jeong G. J., Khan F., Tabassum N., Cho K. J., Kim Y. M. Bacterial extracellular vesicles: modulation of biofilm and virulence properties // Acta Biomater. 2024. V. 178. P. 13-23. https://doi.org/10.1016/j.actbio.2024.02.029
  96. 96. Jiang W., Wang X., Su Y., Cai L., Li J., Liang J., Gu Q., Sun M., Shi L. Intranasal immunization with a c-di-GMP-adjuvanted acellular pertussis vaccine provides superior immunity against Bordetella pertussis in a mouse model // Front. Immunol. 2022. V. 13. Art. 878832. https://doi.org/10.3389/fimmu.2022.878832
  97. 97. Kalia M., Amari D., Davies D. G., Sauer K. Cis-DA-dependent dispersion by Pseudomonas aeruginosa biofilm and identification of cis-DA-sensory protein DspS // mBio. 2023. V. 14. Art. e0257023. https://doi.org/10.1128/mbio.02570-23
  98. 98. Kebriaei R., Lev K. L., Shah R. M., Stamper K. C., Holger D. J., Morrisette T., Kunz Coyne A. J., Lehman S. M., Rybak M. J. Eradication of biofilm-mediated methicillin-resistant Staphylococcus aureus infections in vitro: bacteriophage-antibiotic combination // Microbiol. Spectr. 2022. V. 10. Art. e0041122. https://doi.org/10.1128/spectrum.00411-22
  99. 99. Kimkes T. E.P., Heinemann M. Reassessing the role of the Escherichia coli CpxAR system in sensing surface contact // PLoS One. 2018. V 13. Art. e0207181. https://doi.org/10.1371/journal.pone. 0207181
  100. 100. Kimkes T. E.P., Heinemann M. How bacteria recognise and respond to surface contact // FEMS Microbiol. Rev. 2020. V. 44. P. 106-122. https://doi.org/10.1093/femsre/fuz029
  101. 101. Knezevic J., Starchl C., Tmava Berisha A., Amrein K. Thyroid-gut-axis: how does the microbiota influence thyroid function? // Nutrients. 2020. V. 12. Art. 1769. https://doi.org/
  102. 102. Kotowska A. M., Zhang J., Carabelli A., Watts J., Aylott J. W., Gilmore I. S., Williams P., Scurr D. J., Alexander M. R. Toward comprehensive analysis of the 3D chemistry of Pseudomonas aeruginosa biofilms // Anal. Chem. 2023. V. 95. P. 18287-18294. https://doi.org/10.1021/acs.analchem.3c04443
  103. 103. Koul S., Kalia V. C. Multiplicity of quorum quenching enzymes: a potential mechanism to limit quorum sensing bacterial population // Indian J. Microbiol. 2017. V. 57. P. 100-108. https://doi.org/10.1007/s12088-016-0633-1
  104. 104. Kowalska-Krochmal B., Dudek-Wicher R. The minimum inhibitory concentration of antibiotics: methods, interpretation, clinical relevance // Pathogens. 2021. V. 10. Art. 165. https://doi.org/10.3390/pathogens1002016
  105. 105. Kragh K. N., Tolker-Nielsen T., Lichtenberg M. The non-attached biofilm aggregate // Commun. Biol. 2023. V. 6. Art. 898. https://doi.org/10.1038/s42003-023-05281-4
  106. 106. Krasnopeeva E., Barboza-Perez U.E., Rosko J., Pilizota T., Lo C. J. Bacterial flagellar motor as a multimodal biosensor // Methods. 2021. V. 193. P. 5-15. https://doi.org/10.1016/j.ymeth.2020.06.012
  107. 107. Krasteva P. V., Giglio K. M., Sondermann H. Sensing the messenger: the diverse ways that bacteria signal through c-di-GMP // Protein Sci. 2012. V. 21. P. 929-948. https://doi.org/10.1002/pro.2093
  108. 108. Kunz Coyne A. J., Stamper K., Bleick C., Kebriaei R., Lehman S. M., Rybak M. J. Synergistic bactericidal effects of phage-enhanced antibiotic therapy against MRSA biofilms // Microbiol. Spectr. 2024. V. 12. Art. e0321223. https://doi.org/10.1128/spectrum.03212-23
  109. 109. Lawther K., Santos F. G., Oyama L. B., Huws S. A. Chemical signalling within the rumen microbiome // Anim. Biosci. 2024. V. 37. P. 337-345. https://doi.org/10.5713/ab.23.0374
  110. 110. Lee K. J., Kim J. A., Hwang W., Park S. J., Lee K. H. Role of capsular polysaccharide (CPS) in biofilm formation and regulation of CPS production by quorum-sensing in Vibrio vulnificus // Mol. Microbiol. 2013. V. 90. P. 841-857. https://doi.org/10.1111/mmi.12401
  111. 111. Ledeboer N. A., Jones B. D. Exopolysaccharide sugars contribute to biofilm formation by Salmonella enterica serovar typhimurium on HEp-2 cells and chicken intestinal epithelium // J. Bacteriol. 2005. V. 187. P. 3214-3226. https://doi.org/10.1128/JB.187.9.3214-3226.2005
  112. 112. Limoli D. H., Jones C. J., Wozniak D. J. Bacterial extracellular polysaccharides in biofilm formation and function // Microbiol. Spectr. 2015. V. 3. Art. 10.1128/microbiolspec.MB-0011-2014. https://doi.org/10.1128/microbiolspec.MB-0011-2014
  113. 113. Mack W. N., Mack J. P., Ackerson A. O. Microbial film development in a trickling filter // Microb. Ecol. 1975. V. 2. P. 215-226. https://doi.org/10.1007/BF02010441
  114. 114. Madi L., Henis Y. Aggregation in Azospirillum brasilense Cd: conditions and factors involved in cell-to-cell adhesion // Plant Soil. 1989. V. 115. P. 89-98. https://doi.org/10.1007/bf02220698
  115. 115. Makabenta J. M.V., Park J., Li C. H., Chattopadhyay A. N., Nabawy A., Landis R. F., Gupta A., Schmidt-Malan S., Patel R., Rotello V. M. Polymeric nanoparticles active against dual-species bacterial biofilms // Molecules. 2021. V. 26. Art. 4958. https://doi.org/10.3390/molecules26164958
  116. 116. Manasherob R., Mooney J. A., Lowenberg D. W., Bollyky P. L., Amanatullah D. F. Tolerant small-colony variants form prior to resistance within a Staphylococcus aureus biofilm based on antibiotic selective pressure // Clin. Orthop. Relat. Res. 2021. V. 479. P. 1471-1481. https://doi.org/10.1097/CORR.0000000000001740
  117. 117. Markus V., Golberg K., Teralı K., Ozer N., Kramarsky-Winter E., Marks RS., Kushmaro A. Assessing the molecular targets and mode of action of furanone C-30 on Pseudomonas aeruginosa quorum sensing // Molecules. 2021. V. 26. Art. 1620. https://doi.org/10.3390/molecules26061620
  118. 118. Marshall K. C. Microorganisms and interfaces // Biosciences. 1980. V. 30. P. 246-249. https://doi.org/10.2307/1307879
  119. 119. McBrayer D.N., Cameron C. D., Tal-Gan Y. Development and utilization of peptide-based quorum sensing modulators in Gram-positive bacteria // Org. Biomol. Chem. 2020. V. 18. P. 7273-7290. https://doi.org/10.1039/d0ob01421d
  120. 120. McSwain B.S., Irvine R. L., Hausner M., Wilderer P. A. Composition and distribution of extracellular polymeric substances in aerobic flocs and granular sludge // Appl. Environ. Microbiol. 2005. V. 71. P. 1051-1057. https://doi.org/10.1128/AEM.71.2.1051-1057.2005
  121. 121. Mills E., Pultz I. S., Kulasekara H. D., Miller S. I. The bacterial second messenger c-di-GMP: mechanisms of signaling // Cell. Microbiol. 2011. V. 13. P. 1122-1129. https://doi.org/10.1111/j.1462-5822.2011.01619
  122. 122. Mehmood A., Liu G., Wang X., Meng G., Wang C., Liu Y. Fungal quorum-sensing molecules and inhibitors with potential antifungal activity: a review // Molecules. 2019. V. 10. Art. 1950. https://doi.org/10.3390/molecules24101950
  123. 123. Mitra A., Mukhopadhyay S. Regulation of biofilm formation by non-coding RNA in prokaryotes // Curr. Res. Pharmacol. Drug Discov. 2022. V. 4. Art. 100151. https://doi.org/10.1016/j.crphar.2022.100151
  124. 124. Mlynek K. D., Bulock L. L., Stone C. J., Curran L. J., Sadykov M. R., Bayles K. W., Brinsmade S. R. Genetic and biochemical analysis of CodY-mediated cell aggregation in Staphylococcus aureus reveals an interaction between extracellular DNA and polysaccharide in the extracellular matrix // J. Bacteriol. 2020. V. 202. Art. e00593-19. https://doi.org/10.1128/JB.00593-19
  125. 125. Motlagh A. M., Bhattacharjee A. S., Goel R. Biofilm control with natural and genetically-modified phages // World J. Microbiol. Biotechnol. 2016. V. 32. Art. 67. https://doi.org/10.1007/s11274-016-2009-4
  126. 126. Mu M., Liu S., DeFlorio W., Hao L., Wang X., Salazar K. S., Taylor M., Castillo A., Cisneros-Zevallos L., Oh J. K., Min Y., Akbulut M. Influence of surface roughness, nanostructure, and wetting on bacterial adhesion // Langmuir. 2023. V. 39. P. 5426-5439. https://doi.org/10.1021/acs.langmuir.3c00091
  127. 127. Muras A., Otero-Casal P., Blanc V., Otero A. Acyl homoserine lactone-mediated quorum sensing in the oral cavity: a paradigm revisited // Sci. Rep. 2020. V. 10 Art. 9800. https://doi.org/10.1038/s41598-020-66704-4
  128. 128. Nesper J., Hug I., Kato S., Hee C. S., Habazettl J. M., Manfredi P., Grzesiek S., Schirmer T., Emonet T., Jenal U. Cyclic di-GMP differentially tunes a bacterial agellar motor through a novel class of CheY-like regulators // Elife. 2017. V. 6. Art e28842. https://doi.org/10.7554/eLife.28842
  129. 129. Nguyen H. T.T., Nguyen T. H., Otto M. The staphylococcal exopolysaccharide PIA - biosynthesis and role in biofilm formation, colonization, and infection // Comput. Struct. Biotechnol. J. 2020. V. 18. P. 3324-3334. https://doi.org/10.1016/j.csbj.2020.10.027
  130. 130. Nielsen L., Li X., Halverson L. J. Cell-cell and cell-surface interactions mediated by cellulose and a novel exopolysaccharide contribute to Pseudomonas putida biofilm formation and fitness under water-limiting conditions // Environ. Microbiol. 2011. V. 13. P. 1342-1356. https://doi.org/10.1111/j.1462-2920.2011.02432
  131. 131. Noakes F. F., Smitten K. L., Maple L. E.C., Bernardino de la Serna J., Robertson C. C., Pritchard D., Fairbanks S. D., Weinstein J. A., Smythe C. G.W., Thomas J. A. Phenazine cations as anticancer theranostics // J. Am. Chem. Soc. 2024. V. 146. P. 12836-12849. https://doi.org/10.1021/jacs.4c03491
  132. 132. Nwoko E. Q.A., Okeke I. N. Bacteria autoaggregation: how and why bacteria stick together // Biochem. Soc. Trans. 2021. V. 49. P.1147-1157. https://doi.org/10.1042/BST20200718
  133. 133. Omran B. A., Tseng B. S., Baek K. H. Nanocomposites against Pseudomonas aeruginosa biofilms: recent advances, challenges, and future prospects // Microbiol. Res. 2024. V. 282. Art. 127656. https://doi.org/10.1016/j.micres.2024.127656
  134. 134. Panlilio H., Rice C. V. The role of extracellular DNA in the formation, architecture, stability, and treatment of bacterial biofilms // Biotechnol. Bioeng. 2021. V. 118. P. 2129-2141. https://doi.org/10.1002/bit.27760
  135. 135. Pezzoni M., Lemos M., Pizzaro R. A., Costa C. S. UVA as environmental signal for alginate production in Pseudomonas aeruginosa: role of this polysaccharide in the protection of planktonic cells and biofilms against lethal UVA doses // Photochem. Photobiol. Sci. 2022. V. 21. P. 1459-1472. https://doi.org/10.1007/s43630-022-00236-w
  136. 136. Penesyan A., Paulsen I. T., Gillings M. R., Kjelleberg S. Manefield M. J. Secondary effects of antibiotics on microbial biofilms // Front. Microbiol. 2020. V. 11. Art. 2109. https://doi.org/10.3389/fmicb.2020.02109
  137. 137. Pham H. T., Shi W., Xiang Y., Foo S. Y., Plan M. R., Courtin P., Chapot-Chartier M.-P., Smid E. J., Liang Z.-X., Marcellin E., Turner M. S. 2021. Cyclic di-AMP oversight of counter-ion osmolyte pools impacts intrinsic cefuroxime resistance in Lactococcus lactis // mBio. 2021. V. 12. Art. e00324-21. https://doi.org/10.1128/mBio.00324-21
  138. 138. Pinto R. M., Soares F. A., Reis S., Nunes C., Van Dijck P. Innovative strategies toward the disassembly of the EPS matrix in bacterial biofilms // Front. Microbiol. 2020. V. 11. Art. 952. https://doi.org/10.3389/fmicb.2020.00952
  139. 139. Potapova A., Garvey W., Dahl P., Guo S., Chang Y., Schwechheimer C., Trebino M. A., Floyd K. A., Phinney B. S., Liu J., Malvankar N. S., Yildiz F. H. Outer membrane vesicles and the outer membrane protein OmpU govern Vibrio cholerae biofilm matrix assembly // mBio. 2024. V. 15. Art. e0330423. https://doi.org/10.1128/mbio.03304-23
  140. 140. Pratt L. A., Kolter R. Genetic analysis of Escherichia coli biofilm formation: roles of agella, motility, chemotaxis and type I pili // Mol. Microbiol. 1998. V. 30. P. 285-293. https://doi.org/10.1046/j.1365-2958.1998.01061.x
  141. 141. Professor Koch’ Remedy for Tuberculosis // Indian J. Med. Res. 2023. V. 157. P. 169-173. https://doi.org/10.4103/0971-5916.373948
  142. 142. Qi X., Yun C., Pang Y., Qiao J. The impact of the gut microbiota on the reproductive and metabolic endocrine system // Gut Microb. 2021. V. 13. P. 1-21. https://doi.org/10.1080/19490976.2021.1894070
  143. 143. Rajput A., Kumar M. Computational exploration of putative LuxR solos in archaea and their functional implications in quorum sensing // Front. Microbiol. 2017. V. 8. Art. 798. https://doi.org/10.3389/fmicb.2017.00798
  144. 144. Ramakrishnan R., Singh A. K., Singh S., Chakravortty D., Das D. Enzymatic dispersion of biofilms: an emerging biocatalytic avenue to combat biofilm-mediated microbial infections // J. Biol. Chem. 2022. V. 298. Art. 102352. https://doi.org/10.1016/j.jbc.2022.102352
  145. 145. Rather M. A., Gupta K., Mandal M. Microbial biofilm: formation, architecture, antibiotic resistance, and control strategies // Braz. J. Microbiol. 2021. V. 52. P. 1701-1718. https://doi.org/10.1007/s42770-021-00624-x
  146. 146. Reichhardt C. The Pseudomonas aeruginosa biofilm matrix protein CdrA has similarities to other fibrillar adhesin proteins // J. Bacteriol. 2023. V. 205. Art. e0001923. https://doi.org/10.1128/jb.00019-23
  147. 147. Rodrigues C. F., Černáková L. Farnesol and tyrosol: secondary metabolites with a crucial quorum-sensing role in Candida biofilm development // Genes (Basel). 2020. V. 11. P. 444. https://doi.org/10.3390/genes11040444
  148. 148. Ruhal R., Kataria R. Biofilm patterns in gram-positive and gram-negative bacteria // Microbiol. Res. 2021. V. 251. Art. 126829. https://doi.org/10.1016/j.micres.2021.126829
  149. 149. Rumbaugh K. P., Sauer K. Biofilm dispersion // Nat. Rev. Microbiol. 2020. V. 18. P. 571-586. https://doi.org/10.1038/s41579-020-0385-0
  150. 150. Sabra A., Bessoule J. J., Atanasova-Penichon V., Noël T., Dementhon K. Host-pathogen interaction and signaling molecule secretion are modified in the dpp3 knockout mutant of Candida lusitaniae // Infect. Immun. 2014. V. 82. P. 413-422. https://doi.org/10.1128/IAI.01263-13
  151. 151. Salzer A., Wolz C. Role of (p)ppGpp in antibiotic resistance, tolerance, persistence and survival in Firmicutes // Microlife. 2023. V. 4. Art. uqad009. https://doi.org/10.1093/femsml/uqad009
  152. 152. Sauer K., Camper A. K., Ehrlich G. D., Costerton J. W., Davies D. G. Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm // J. Bacteriol. 2002. V. 184. P. 1140-1154. https://doi.org/10.1038/s41579-022-00767-0
  153. 153. Sauer K., Stoodley P., Goeres D. M., Hall-Stoodley L., Burmølle M., Stewart P. S., Bjarnsholt T. The biofilm life cycle: expanding the conceptual model of biofilm formation // Nature Rev. Microbiol. 2022. V. 20. P. 608-620. https://doi.org/10.1038/s41579-022-00767-0
  154. 154. Shamir E. R., Warthan M., Brown S. P., Nataro J. P., Guerrant R. L., Hoffman P. S. Nitazoxanide inhibits biofilm production and hemagglutination by enteroaggregative Escherichia coli strains by blocking assembly of AafA fimbriae // Antimicrob. Agents Chemother. 2010. V. 54. P. 1526-1533. https://doi.org/10.1128/AAC.01279-09
  155. 155. Schilcher K., Horswill A. R. Staphylococcal biofilm development: structure, regulation, and treatment strategies // Microbiol. Mol. Biol. Rev. 2020. V. 84. Art. e00026-19. https://doi.org/10.1128/MMBR.00026-19
  156. 156. Schirmer T. C-di-GMP synthesis: structural aspects of evolution, catalysis and regulation // J. Molec. Biol. 2016. V. 428. P. 3683-3701. https://doi.org/10.1016/j.jmb.2016.07.023
  157. 157. Schirmer T., Jenal U. Structural and mechanistic determinants of c-di-GMP signaling // Nature Rev. Microbiol. 2009. V. 7. P. 724-735. https://doi.org/10.1038/nrmicro2203
  158. 158. Schleheck D., Barraud N., Klebensberger J., Webb J. S., McDougald D., Rice S. A., Kjelleberg S. Pseudomonas aeruginosa PAO1 preferentially grows as aggregates in liquid batch cultures and disperses upon starvation // PLoS One. 2009. V. 4. Art. e5513. https://doi.org/10.1371/journal.pone.0005513
  159. 159. Shikuma N. J., Fong J. C., Yildiz F. H. Cellular levels and binding of c-di-GMP control subcellular localization and activity of the Vibrio cholerae transcriptional regulator VpsT // PLoS Pathog. 2012. V. 5. Art. e1002719. https://doi.org/10.1371/journal.ppat.1002719
  160. 160. Sikdar R., Elias M. H. Evidence for complex interplay between quorum sensing and antibiotic resistance in Pseudomonas aeruginosa // Microbiol. Spectr. 2022. V. 10. Art. e0126922. https://doi.org/10.1128/spectrum.01269-22
  161. 161. Soares A., Alexandre K., Etienne M. Tolerance and persistence of Pseudomonas aeruginosa in biofilms exposed to antibiotics: molecular mechanisms, antibiotic strategies and therapeutic perspectives // Front. Microbiol. 2020. V. 11. Art. 2057. https://doi.org/10.3389/fmicb.2020.02057
  162. 162. Songca S. P., Adjei Y. Applications of antimicrobial photodynamic therapy against bacterial biofilms // Int. J. Mol. Sci. 2022. V. 23. Art. 3209. https://doi.org/10.3390/ijms23063209
  163. 163. de Souza Oliveira P. F., Faria A. V.S., Clerici S. P., Akagi E. M., Carvalho H. F., Justo G. Z., Durán N., Ferreira-Halder C. V. Violacein negatively modulates the colorectal cancer survival and epithelial-mesenchymal transition // J. Cell Biochem. 2022. V. 123. P. 1247-1258. https://doi.org/10.1002/jcb.30295
  164. 164. Sycz Z., Tichaczek-Goska D., Wojnicz D. Anti-planktonic and anti-biofilm properties of pentacyclic triterpenes-asiatic acid and ursolic acid as promising antibacterial future pharmaceuticals // Biomolec. 2022. V. 12. Art. 98. https://doi.org/10.3390/biom12010098
  165. 165. Tal R., Wong H. C., Calhoon R., Gelfand D., Fear A. L., Volman G., Mayer R., Ross P., Amikam D., Weinhouse H., Cohen A., Sapir S., Ohana P., Benziman M. Three cdg operons control cellular turnover of cyclic di-GMP in Acetobacter xylinum: genetic organization and occurrence of conserved domains in isoenzymes // J. Bacteriol. 1998. V. 180. P. 4416-4425. https://doi.org/10.1128/JB.180.17.4416-4425.1998
  166. 166. Taş N., de Jong A. E., Li Y., Trubl G., Xue Y., Dove N. C. Metagenomic tools in microbial ecology research // Curr. Opin. Biotechnol. 2021. V. 67. P. 184-191. https://doi.org/0.1016/j.copbio.2021.01.019
  167. 167. Teteneva N. A., Mart’yanov S.V., Esteban-López M., Kahnt J., Glatter T., Netrusov A. I., Plakunov V. K., Sourjik V. Multiple drug-induced stress responses inhibit formation of E. coli biofilms // Appl. Environ. Microbiol. 2020. V. 86. Art. e01113-20. https://doi.org/10.1128/AEM.01113-20
  168. 168. Thompson T. P., Busetti A., Gilmore B. F. Quorum sensing in Halorubrum saccharovorum facilitates cross-domain signaling between archaea and bacteria // Microorganisms. 2023. V. 11. Art. 1271. https://doi.org/10.3390/microorganisms11051271
  169. 169. Toyofuku M., Roschitzki B., Riedel K., Eberl L. Identification of proteins associated with the Pseudomonas aeruginosa biofilm extracellular matrix // J. Proteom. Res. 2012. V. 11. P. 4906-4915. https://doi.org/10.1021/pr300395j
  170. 170. Urbaniec J., Xu Y., Hu Y., Hingley-Wilson S., McFadden J. Phenotypic heterogeneity in persisters: a novel “hunker” theory of persistence // FEMS Microbiol. Rev. 2022. V. 46. Art. fuab042. https://doi.org/10.1093/femsre/fuab042
  171. 171. Utada A. S., Bennett R. R., Fong J. C.N., Gibiansky M. L., Yildiz F. H., Golestanian R., Wong G. C.L. Vibrio cholerae use pili and flagella synergistically to effect motility switching and conditional surface attachment // Nat. Commun. 2014. V. 5. Art. 4913. https://doi.org/10.1038/ncomms5913
  172. 172. Vasina D. V., Antonova N. P., Shidlovskaya E. V., Kuznetsova N. A., Grishin A. V., Akoulina E. A., Trusova E. A., Lendel A. M., Mazunina E. P., Kozlova S. R., Dudun A. A., Bonartsev A. P., Lunin V. G., Gushchin V. A. Alginate gel encapsulated with enzybiotics cocktail is effective against multispecies biofilms // Gels. 2024. V. 10. Art. 60. https://doi.org/10.3390/gels10010060
  173. 173. Vuong C., Kocianova S., Voyich J. M., Yao Y., Fischer E. R., DeLeo F.R., Otto M. A crucial role for exopolysaccharide modification in bacterial biofilm formation, immune evasion, and virulence // J. Biol. Chem. 2004. V. 279. P. 54881-54886. https://doi.org/10.1074/jbc.M411374200
  174. 174. Wall G., Montelongo-Jauregui D., Vidal Bonifacio B., Lopez-Ribot J.L., Uppuluri P. Candida albicans biofilm growth and dispersal: contributions to pathogenesis // Curr. Opin. Microbiol. 2019. V. 52. P. 1-6. https://doi.org/10.1016/j.mib.2019.04.001
  175. 175. Webster S. S., Lee C. K., Schmidt W. C., Wong G. C.L., O’Toole G. A. Interaction between the type 4 pili machinery and a diguanylate cyclase fine-tune c-di-GMP levels during early biofilm formation // Proc. Natl. Acad. Sci. USA. 2021. V. 118. Art. e2105566118. https://doi.org/10.1073/pnas.2105566118
  176. 176. Williams D. E., Boon E. M. Towards understanding the molecular basis of nitric oxide-regulated group behaviors in pathogenic bacteria // J. Innate Immun. 2019. V. 11. P. 205-215. https://doi.org/10.1159/000494740
  177. 177. Van Wolferen M., Orell A., Albers S.-V. Archaeal biofilm formation // Nature Rev. Microbiol. 2018. V. 16. P. 699-713. https://doi.org/10.1038/s41579-018-0058-4
  178. 178. Wright G. D. The antibiotic resistome // Expert Opin. Drug Discov. 2010. V. 5. P. 779-788. https://doi.org/10.1517/17460441.2010.497535
  179. 179. Wu M., Huang S., Du J., Jiang S., Cai Z., Zhan L., Huang X. Role of D-alanylation of Streptococcus mutans lipoteichoic acid in interspecies competitiveness // Mol. Oral Microbiol. 2021. V. 36. P. 233-242. https://doi.org/10.1111/omi.12344
  180. 180. Xiong F., Zhao X., Wen D., Li Q. Effects of N-acyl-homoserine lactones-based quorum sensing on biofilm formation, sludge characteristics, and bacterial community during the start-up of bioaugmented reactors // Sci. Total Environ. 2020. V. 735. Art. 139449. https://doi.org/10.1016/j.scitotenv.2020.139449
  181. 181. Xu G. Evolution of LuxR solos in bacterial communication: receptors and signals // Biotechnol. Lett. 2020. V. 42. P. 181-186. https://doi.org/10.1007/s10529-019-02763-6
  182. 182. Yan J., Bassler B. L. Surviving as a community: antibiotic tolerance and persistence in bacterial biofilms // Cell Host Microbe. 2019. V. 26. P. 15-21. https://doi.org/10.1016/j.chom.2019.06.002
  183. 183. Yildiz F. H., Schoolnik G. K. Vibrio cholerae O1 El Tor: identification of a gene cluster required for the rugose colony type, exopolysaccharide production, chlorine resistance, and biofilm formation // Proc. Natl. Acad. Sci. USA. 1999. V. 96. P. 4028-4033. https://doi.org/10.1073/pnas.96.7.4028
  184. 184. Yliniemi J. Surface layer alteration of multi-oxide silicate glasses at a near-neutral pH in the presence of citric and tartaric acid // Langmuir. 2022. V. 38. P. 987-1000. https://doi.org/10.1021/acs.langmuir.1c02378
  185. 185. Zadeh R. G., Kalani B. S., Ari M. M., Talebi M., Razavi S., Jazi F. M. Isolation of persister cells within the biofilm and relative gene expression analysis of type II toxin/antitoxin system in Pseudomonas aeruginosa isolates in exponential and stationary phases // J. Glob. Antimicrob. Resist. 2022. V. 28. P. 30-37. https://doi.org/10.1016/j.jgar.2021.11.009
  186. 186. Zhang G., Zhang F., Ding G., Li J., Guo X., Zhu J., Zhou L., Cai S., Liu X., Luo Y., Zhang G., Shi W., Dong X. Acyl homoserine lactone-based quorum sensing in a methanogenic archaeon // ISME J. 2012. V. 6. P. 1336-1344. https://doi.org/10.1038/ismej.2011.203
  187. 187. Zhang J., Brown J., Scurr D., Bullen A., MacLellan-Gibson K., Williams P., Hardie K. R., Gilmore I. S., Rakowska P. D. Cryo-OrbiSIMS for 3D molecular imaging of a bacterial biofilm in its native state // Anal. Chem. 2020. V. 92. P. 9008-9015. https://doi.org/10.1021/acs.analchem.0c01125
  188. 188. Zhang Z., Lizer N., Wu Z., Morgan C. E., Yan Y., Zhang Q., Yu E. W. Cryo-electron microscopy structures of a Campylobacter multidrug efflux pump reveal a novel mechanism of drug recognition and resistance // Microbiol. Spectr. 2023. V. 11. Art. e0119723. https://doi.org/10.1128/spectrum.01197-23
  189. 189. Zhu J., Krom B. P., Sanglard D., Intapa C., Dawson C. C., Peters B. M., Shirtliff M. E., Jabra-Rizk M. A. Farnesol-induced apoptosis in Candida albicans is mediated by Cdr1-p extrusion and depletion of intracellular glutathione // PLoS One. 2011. V. 6. Art. e28830. https://doi.org/10.1371/journal.pone.0028830
  190. 190. Zobell C. E. The influence of solid surface upon the physiological activities of bacteria in sea water // J. Bacteriol. 1937. V. 33. P. 86.
  191. 191. Zobell C. E. The effect of solid surfaces upon bacterial activity // J. Bacteriol. 1943. V. 46. P. 39-56. https://doi.org/10.1128/jb.46.1.39-56.1943
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека