RAS BiologyМикробиология Microbiology

  • ISSN (Print) 0026-3656
  • ISSN (Online) 3034-5464

Effectiveness of Microalgae and Cyanobacteria Cryopreservation (for the Strains from the All-Russian Collection of Microorganisms)

PII
S3034546425040029-1
DOI
10.7868/S3034546425040029
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 94 / Issue number 4
Pages
330-340
Abstract
The efficiency of cryopreservation of cyanobacteria and eukaryotic microalgae of different taxonomic groups, including charophyte, chlorophyte and ochrophyte microalgae, was assessed using 24 strains of the algological part of the All-Russian Collection of Microorganisms (VKM) as an example. Microalgae cultures differing in cell size, morphological organization of the thallus, reproduction method, presence and size of mucous membranes, and ability to form dormant cells were selected for comparative study. Two types of cryoprotectors (methanol and dimethyl sulfoxide), two types of nutrient media (slant agar and liquid medium), and three methods for determining the survival of microalgae after cryopreservation were tested. It was shown that a two-step cryopreservation protocol using both cryoprotectants (methanol and dimethyl sulfoxide) was successfully applied to all 24 studied strains, regardless of their taxonomic affiliation and morphological features. Based on the results of the experiment, a standard operating procedure for cryopreservation of microalgae was developed, including a liquid culture medium with dimethyl sulfoxide, as well as two methods for determining the survival of microalgae after cryopreservation - growth in a liquid medium and streaks on agar. The proposed protocol not only ensures the preservation of cell viability and the possibility of further use of the strain as a morphologically and genetically representative sample, but also minimizes time and resource costs, as well as the risk of contamination of cultures.
Keywords
цианобактерии микроводоросли длительное хранение выживаемость стратегия ex situ биоресурсная коллекция
Date of publication
01.08.2025
Year of publication
2025
Number of purchasers
0
Views
66

References

  1. 1. Beaty M.H. Cryopreservation of eukaryote algae. Master of Science in Biology thesis. Blacksburg, Virginia: Virginia Polytechnic Institute and State University, 1991. 116 p.
  2. 2. Cameron R. E. Species of Nostoc vaucher occurring in the Sonoran Desert in Arizona // Trans. Am. Microsc. Soc. 1962. V. 81. P. 379-384. https://doi.org/10.2307/3223790
  3. 3. Day J. G., Priestley I. M., Codd G. A. Storage, recovery and photosynthetic activities of immobilised algae // Plant and animal cells: process possibilities / Eds. Webb C., Mavituna F. Chichester, West Sussex: Ellis Horwood Limited, 1987. P. 257-261.
  4. 4. Ettl H., Gärtner G. Syllabus der boden-, luft-und flech-tenalgen. 2., ergänzte Auflage. Berlin, Heidelberg: Springer Spektrum, 2014. 773 p. https://doi.org/10.1007/978-3-642-39462-1
  5. 5. Fernandes M. S., Calsing L. C., Nascimento R. C., Santana H., Morais P. B., de Capdeville G., Brasil B. S. Customized cryopreservation protocols for chlorophytes based on cell morphology // Algal Res. 2019. V. 38. Art. 101402. https://doi.org/10.1016/j.algal.2018.101402
  6. 6. Foo S. C., Mok C. Y., Ho S. Y., Khong N. M.H. Microalgal culture preservation: progress, trends and future developments // Algal Res. 2023. V. 71. Art. 103007. https://doi.org/10.1016/j.algal.2023.103007
  7. 7. Friedl T., Lorenz M. The culture collection of algae at Göttingen University (SAG): a biological resource for biotechnological and biodiversity research // Procedia Environ. Sci. 2012. V. 15. P. 110-117. https://doi.org/10.1016/J.PROENV.2012.05.015
  8. 8. Guiry M. D. How many species of algae are there? A reprise. Four kingdoms, 14 phyla, 63 classes and still growing // J. Phycol. 2024. V. 60. P. 214-228. https://doi.org/10.1111/jpy.13431
  9. 9. Holm-Hansen O. Viability of blue-green and green algae after freezing // Physiol. Plant. 1963. V. 16. P. 530-540. https://doi.org/10.1111/j.1399-3054.1963.tb08330.x
  10. 10. Kapoore R. V., Huete-Ortega M., Day J. G., Okurowska K., Slocombe S. P., Stanley M. S., Vaidyanathan S. Effects of cryopreservation on viability and functional stability of an industrially relevant alga // Sci. Rep. 2019. V. 9. Art. 2093. https://doi.org/10.1038/s41598-019-38588-6
  11. 11. Leeson E. A., Cann J. P., Morris G. J. Maintenance of algae and protozoa // Maintenance of Microorganisms / Eds. Kirsop B.E., Snell J. J.S. London: Academic Press, 1984. P. 131-160.
  12. 12. Lewis L. A., Trainor F. R. Survival of Protosiphon botryoides (Chlorophyceae, Chlorophyta) from a Connecticut soil dried for 43 years // Phycologia. 2012. V. 51. P. 662-665. https://doi.org/10.2216/11-108.1
  13. 13. Leya T. The CCCryo Culture Collection of Cryophilic Algae as a valuable bioresource for algal biodiversity and for novel, industrially marketable metabolites // Appl. Phycol. 2022. V. 3. P. 167-188. https://doi.org/10.1080/26388081.2020.1753572
  14. 14. Prieto-Guevara M., Alarcón-Furnieles J., Jiménez-Velásquez C., Hernández-Julio Y., Espinosa-Araujo J., Atencio-García V. Cryopreservation of the microalgae Scenedesmus sp. // Cells. 2023. V. 12. Art. 562. https://doi.org/10.3390/cells12040562
  15. 15. Morris G. J. Cryopreservation of 250 strains of Chlorococ-cales by the method of two-step cooling // Br. Phycol. J. 1978. V. 13. P. 15-24. https://doi.org/10.1080/00071617800650031
  16. 16. Müller J., Day J. G., Harding K., Hepperle D., Lorenz M., Friedl T. Assessing genetic stability of a range of terrestrial microalgae after cryopreservation using amplified fragment length polymorphism (AFLP) // Am.J. Bot. 2007. V. 94. P. 799-808. https://doi.org/10.3732/ajb.94.5.799
  17. 17. Osório H. C., Laranjeiro C. N., Santos L. M., Santos M. F. First attempts to cryopreserve strains from the Coimbra Collection of Algae (ACOI) and the use of image analysis to assess viability // Nova Hedwigia. 2004. V. 79. P. 227-235. https://doi.org/10.1127/0029-5035/2004/0079-0227
  18. 18. Paredes E., Ward A., Probert I., Gouhier L., Campbell C. N. Cryopreservation of Algae // Cryopreservation and freeze-drying protocols. Methods in Molecular Biology / Eds. Wolkers W. F., Oldenhof H. NY: Humana New York, 2021. V. 2180. P. 607-621. https://doi.org/10.1007/978-1-0716-0783-1_32
  19. 19. Puchkov E. O. Preservation of viable microorganisms in the laboratory: an overview of basics, methods and practical recommendations for beginners // Austin J. Biotechnol. Bioeng. 2023. V. 10. Art. 1119. https://doi.org/10.26420/austinjbiotechnolbioeng.2023.1119
  20. 20. Rastoll M. J., Ouahid Y., Martín-Gordillo F., Ramos V., Vasconcelos V., Del Campo F. F. The development of a cryopreservation method suitable for a large cyanobacteria collection // J. Appl. Phycol. 2013. V. 25. № 5. P. 1483-1493. https://doi.org/10.1007/s10811-013-0001-z
  21. 21. Urmeneta J., Navarrete A., Huete J., Guerrero R. Isolation and characterization of cyanobacteria from microbial mats of the Ebro Delta, Spain // Curr. Microbiol. 2003. V. 46. P. 0199-0204. https://doi.org/10.1007/s00284-002-3856-9
  22. 22. Wan M. C., Qin W., Lei C., Li Q. H., Meng M., Fang M., Song W., Chen J. H., Tay F., Niu L. N. Biomaterials from the sea: Future building blocks for biomedical applications // Bioact. Mater. 2021. V. 6. P. 4255-4285. https://doi.org/10.1016/j.bioactmat.2021.04.028
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library