RAS BiologyМикробиология Microbiology

  • ISSN (Print) 0026-3656
  • ISSN (Online) 3034-5464

Effect of Biogenic Polyamines on Rifampicin Accumulation in Escherichia coli Cells

PII
S3034546425040038-1
DOI
10.7868/S3034546425040038
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 94 / Issue number 4
Pages
341-350
Abstract
The biogenic polyamines are well known to regulate cell wall permeability for antibiotics permeating the cell via porins. The effect of polyamines on the antibiotics transported by the non-porin route, such as rifampicin, has not been studied. In this work, the effect of intracellular putrescine, spermidine, and cadaverine on the efficiency of rifampicin accumulation, the bacterial susceptibility to rifampicin, the hydrophobicity of the cell surface, as well as the effect of polyamines on the expression of the marRAB operon was tested. None of the three polyamines studied affected the rate of rifampicin transport into the cell at the early stages (2 min). Under the longer exposure (60 min) a protective effect of cadaverine was observed, since the accumulation of rifampicin in cadaverine-free cells was higher compared to cadaverine-proficient ones. The absence of cadaverine in Escherichia coli cells increased their hydrophobicity. There was a direct relationship between the degree of hydrophobicity of the cell surface and the efficiency of rifampicin accumulation. Polyamines themselves did not affect the expression of marRAB operon, but modulated its expression induced by salicylate. Putrescine had no effect, spermidine decreased and cadaverine increased the expression level. Overall, polyamine biosynthesis plays a role in bacterial adaptation to rifampicin, as the strains unable to synthesize cadaverine or putrescine and spermidine were more sensitive than the wildtype strains. Cadaverine plays a special role in protecting against the effects of rifampicin; its intracellular concentration affected bacterial susceptibility to rifampicin.
Keywords
рифампицин полиамины кадаверин непориновый транспорт гидрофобность антибиотикочувствительность
Date of publication
01.08.2025
Year of publication
2025
Number of purchasers
0
Views
70

References

  1. 1. Akhova A., Nesterova L., Shumkov M., Tkachenko A. Cadaverine biosynthesis contributes to decreased Escherichia coli susceptibility to antibiotics // Res. Microbiol. 2021. V. 172. Art. 103881. https://doi.org/10.1016/j.resmic.2021.103881
  2. 2. Akhova A., Tkachenko A. Multifaceted role of polyamines in bacterial adaptation to antibiotic-mediated oxidative stress // Korean J. Microbiol. 2020. V. 56. P. 103-110. https://doi.org/10.7845/kjm.2020.0013
  3. 3. Alekshun M. N., Levy S. B., Mealy T. R., Seaton B. A., Head J. F. The crystal structure of MarR, a regulator of multiple antibiotic resistance, at 2.3 Å resolution // Nat. Struct. Biol. 2001. V. 8. P. 710-714. https://doi.org/10.1038/90429
  4. 4. delaVega A.L., Delcour A. H. Cadaverine induces closing of E. coli porins // EMBO J. 1995. V. 14. № 23. P. 6058-6065. https://doi.org/10.1002/j.1460-2075.1995.tb00294.x
  5. 5. Delcour A. H. Outer membrane permeability and antibiotic resistanc // Biochim. Biophys. Acta. 2009. V. 1794. P. 808-816. https://doi.org/10.1016/j.bbapap.2008.11.005
  6. 6. Grossowicz N., Ariel M. Mechanism of protection of cells by spermine against lysozyme-induced lysis // J. Bacteriol. 1963. V. 85. P. 293-300. https://doi.org/10.1128/jb.85.2.293-300.1963
  7. 7. Hancock R. E., Farmer S. W., Li Z. S., Poole K.Interaction of aminoglycosides with the outer membranes and purified lipopolysaccharide and OmpF porin of Escherichia coli // Antimicrob. Agents Chemother. 1991. V. 35. P. 1309-1314. https://doi.org/10.1128/AAC.35.7.1309
  8. 8. Harmon D. E., Ruiz C. The multidrug efflux regulator AcrR of Escherichia coli responds to exogenous and endogenous ligands to regulate efflux and detoxification // mSphere. 2022. V. 7. Art. e0047422. https://doi.org/10.1128/msphere.00474-22
  9. 9. Kojima S., Kaneko J., Abe N., Takatsuka Y., Kamio Y. Cadaverine covalently linked to the peptidoglycan serves as the correct constituent for the anchoring mechanism between the outer membrane and peptidoglycan in Selenomonas ruminantium // J. Bacteriol. 2011. V. 193. P. 2347-2350. https://doi.org/10.1128/JB.00106-11
  10. 10. Leus I. V., Adamiak J., Chandar B., Bonifay V., Zhao S., Walker S. S., Squadroni B., Balibar C. J., Kinarivala N., Standke L. C., Voss H. U., Tan D. S., Rybenkov V. V., Zgurskaya H. I. Functional diversity of Gram-negative permeability barriers reflected in antibacterial activities and intracellular accumulation of antibiotics // Antimicrob. Agents Chemother. 2023. V. 67. Art. e0137722. https://doi.org/10.1128/aac.01377-22
  11. 11. Li X. Z., Plésiat P., Nikaido H. The challenge of efflux-mediated antibiotic resistance in Gram-negative bacteria // Clin. Microbiol. Rev. 2015. V. 28. P. 337-418. https://doi.org/10.1128/CMR.00117-14
  12. 12. Maher C., Hassan K. A. The Gram-negative permeability barrier: tipping the balance of the in and the out // mBio. 2023. V. 14. Art. e0120523. https://doi.org/10.1128/mbio.01205-23
  13. 13. McNeil M.B., Dennison D., Parish T. Mutations in MmpL3 alter membrane potential, hydrophobicity and antibiotic susceptibility in Mycobacterium smegmatis // Microbiology (Reading). 2017. V. 163. P. 1065-1070. https://doi.org/10.1099/mic.0.000498
  14. 14. Miller J. H. Experiments in molecular genetics. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory, 1992. 466 p.
  15. 15. Nesterova L. Y., Tsyganov I. V., Tkachenko A. G. Biogenic polyamines influence the antibiotic susceptibility and cell-surface properties of Mycobacterium smegmatis // Appl. Biochem. Microb. 2020. V. 56. P. 387-394. https://doi.org/10.1134/S0003683820040110
  16. 16. Nikaido H. Molecular basis of bacterial outer membrane permeability revisited // Microbiol. Mol. Biol. Rev. 2003. V. 67. P. 593-656. https://doi.org/10.1128/MMBR.67.4.593-656.2003
  17. 17. Nobre T. M., Martynowycz M. W., Andreev K., Kuzmenko I., Nikaido H., Gidalevitz D. Modification of Salmonella lipopolysaccharides prevents the outer membrane penetration of novobiocin // Biophys. J. 2015. V. 109. P. 2537-2545. https://doi.org/10.1016/j.bpj.2015.10.013
  18. 18. Peloquin C. A., Davies G. R. The treatment of tuberculosis // Clin. Pharmacol. Ther. 2021. V. 110. P. 1455-1466. https://doi.org/10.1002/cpt.2261
  19. 19. Randall L. P., Woodward M. J. The multiple antibiotic resistance (mar) locus and its significance // Res. Vet. Sci. 2002. V. 72. P. 87-93. https://doi.org/10.1053/rvsc.2001.0537
  20. 20. Rosenberg M. Microbial adhesion to hydrocarbons: twenty-five years of doing MATH // FEMS Microbiol. Lett. 2006. V. 262. P. 129-134. https://doi.org/10.1111/j.1574-6968.2006.00291.x
  21. 21. Samartzidou H., Delcour A. H. Excretion of endogenous cadaverine leads to a decrease in porin-mediated outer membrane permeability // J. Bacteriol. 1999. V. 181. P. 791-798. https://doi.org/10.1128/JB.181.3.791-798.1999
  22. 22. Tkachenko A. G., Akhova A. V., Shumkov M. S., Nesterova L. Y. Polyamines reduce oxidative stress in Escherichia coli cells exposed to bactericidal antibiotics // Res. Microbiol. 2012. V. 163. P. 83-91. https://doi.org/10.1016/j.resmic.2011.10.009
  23. 23. Tkachenko A. G., Pozhidaeva O. N., Shumkov M. S. Role of polyamines in formation of multiple antibiotic resistance of Escherichia coli under stress conditions // Biochemistry (Moscow). 2006. V. 71. P. 1042-1049. https://doi.org/10.1134/s0006297906090148
  24. 24. Williams K. J., Piddock L. J. Accumulation of rifampicin by Escherichia coli and Staphylococcus aureus // J. Antimicrob. Chemother. 1998. V. 42. P. 597-603. https://doi.org/10.1093/jac/42.5.597
  25. 25. World Health Organisation. Global antimicrobial resistance and use surveillance system (GLASS) report 2022. World Health Organisation, Geneva, 2022. 72 p.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library